精英家教网 > 高中数学 > 题目详情
如图,长方体ABCD-A1B1C1D1中,AB=AD=2,AA1=4,点P为面ADD1A1的对角线AD1上的动点(不包括端点).PM⊥平面ABCD交AD于点M,MN⊥BD于点N.
(1)设AP=x,将PN长表示为x的函数;
(2)当PN最小时,求异面直线PN与A1C1所成角的大小.(结果用反三角函数值表示)
考点:异面直线及其所成的角,函数解析式的求解及常用方法
专题:计算题,函数的性质及应用,空间角
分析:(1)求出PM,AM,运用余弦定理,求得PN;
(2)求出PN的最小值,由于MN∥AC,又A1C1∥AC,∠PNM为异面直线PN与A1C1所成角的平面角,通过解直角三角形PMN,即可得到.
解答: 解:(1)在△APM中,PM=
2
5
x
5
AM=
5
x
5
; 
其中0<x<2
5
; 
在△MND中,MN=
2
2
(2-
5
5
x)

在△PMN中,PN=
9
10
x2-
2
5
5
x+2
x∈(0,2
5
)

(2)当x=
2
5
9
∈(0,2
5
)
时,PN最小,此时PN=
4
3

因为在底面ABCD中,MN⊥BD,AC⊥BD,所以MN∥AC,又A1C1∥AC,
∠PNM为异面直线PN与A1C1所成角的平面角,
在△PMN中,∠PMN为直角,tan∠PNM=
2
4

所以∠PNM=arctan
2
4

异面直线PN与A1C1所成角的大小arctan
2
4
点评:本题考查空间异面直线所成的角的求法,考查二次函数的性质和运用:求最值,考查运算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=2x2-4x-3的零点个数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

x|x|
16
+
y|y|
9
=-1
的曲线即为函y=f(x)的图象,对于函数y=f(x),有如下结论:
①x在R上单调递减;
②函数F(x)=4f(x)+3x不存在零点;
③函数y=f(x)的值域是R;
④若函数g(x)和f(x)的图象关于原点对称,则函数y=g(x)的图象就是方程
y|y|
16
+
x|x|
9
=1
确定的曲线.
其中所有正确的命题序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD为菱形,ACFE为平行四边形,且面ACFE⊥面ABCD,AB=BD=2,AE=
3
,设BD与AC相交于点G,H为FG的中点.
(Ⅰ)证明:CH⊥面BFD;
(Ⅱ)若CH=
3
2
,求EF与面EDB所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

若N(x)=(1+x)2-1+ln(1+x),判断并证明N(x)在(-1,+∞)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=alnx-x+
1
x

(1)判断函数f(x)的单调性;
(2)证明:当x>0时,ln(1+
1
x
)<
1
x2+x

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
ax
1+ax
(a>0a≠1),其中[m]表示不超过m的最大整数,如[4.1]=4,则函数y=[f(x)-
1
2
]+[f(-x)-
1
2
]的值域是(  )
A、{0,1}
B、{-1,1}
C、{-1,0}
D、{-1,0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两个定点坐标分别是F1(-3,0),F2(3,0),曲线C上一点任意一点到两定点的距离之差的绝对值等于2
5

(1)求曲线C的方程;
(2)过F1(-3,0)引一条倾斜角为45°的直线与曲线C相交于A、B两点,求△ABF2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

以下茎叶图记录了甲、乙两组各四名同学的植树棵数.乙组记录中有一个数据模糊,无法确认,在图中以X表示.

(Ⅰ)如果X=8,求乙组同学植树棵树的平均数和方差;
(Ⅱ)如果X=7,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为17的概率.

查看答案和解析>>

同步练习册答案