精英家教网 > 高中数学 > 题目详情
下列函数中,既不是奇函数又不是偶函数,且在(-∞,0)上是增函数的是(  )
A、f(x)=5x+2
B、f(x)=
x
C、f(x)=
1
x
-1
D、f(x)=x2
考点:函数的单调性及单调区间
专题:函数的性质及应用
分析:根据函数的奇偶性和单调性的定义和性质分别进行判断即可.
解答: 解:A.f(x)=5x+2在定义域上单调递增,且为非奇非偶函数,满足条件.
B.f(x)=
x
在(-∞,0)上无意义,不满足条件.
C.f(x)=
1
x
-1
在(-∞,0)上是减函数,不满足条件.
D.f(x)=x2是偶函数,不满足条件.
故选:A.
点评:本题主要考查函数奇偶性和单调性的性质,要求熟练掌握常见函数的奇偶性和单调性的性质,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}为等比数列,Sn为其前n项和,n∈N*已知a1+a2+a3=3,a4+a5+a6=6,则S12等于(  )
A、15B、30C、45D、60

查看答案和解析>>

科目:高中数学 来源: 题型:

直线y=kx-2与抛物线y2=8x交于A、B两点,且线段AB的中点的纵坐标为2,则k的值是(  )
A、-1B、2
C、-1或2D、以上都不是

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tan(
π
4
+α)=
1
2
,则
sin2α-cos2α
1+cos2α
的值为(  )
A、-
5
3
B、-
5
6
C、-
1
6
D、-
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A(-1,2,7),B(-3,-10,-9),则以线段AB中点关于原点对称的点的坐标是(  )
A、(4,8,2)
B、(4,2,8)
C、(4,2,1)
D、(2,4,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,cos2C-2cos2
A+B
2
+1=0

(1)求角C的大小;
(2)若b2=3a2+c2,求tanB的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

圆心在直线5x-3y-8=0上的圆与两坐标轴相切,求此圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
(1)
1
5
-2
-(
3
5
)0+(
9
4
)-0.5+
4(2-e)4
-
9-4
5

(2)
(1-log63)2+log62•log618
log64

查看答案和解析>>

科目:高中数学 来源: 题型:

8
3
27
2
之间插入三个数,使这五个数成等比数列.求插入的三个数的乘积.

查看答案和解析>>

同步练习册答案