【题目】袋内有大小完全相同的
个黑球和
个白球,从中不放回地每次任取
个小球,直至取到白球后停止取球,则( )
A.抽取
次后停止取球的概率为![]()
B.停止取球时,取出的白球个数不少于黑球的概率为![]()
C.取球次数
的期望为![]()
D.取球次数
的方差为![]()
科目:高中数学 来源: 题型:
【题目】“日行一万步,健康你一生”的养生观念已经深入人心,由于研究需要,某学生收集了“微信运动”中100名成员一天的行走步数,对这100个数据按组距为2500进行分组,并统计整理,绘制了如下尚不完整的统计表:
步数分组统计表(设步数为
)
组别 | 步数分组 | 频数 |
|
| 10 |
|
|
|
|
| 20 |
|
| 10 |
|
|
|
已知达到“日行一万步,健康你一生”标准的频率为
.
(1)求
,
的值;
(2)以频率估计概率,从该“微信运动”中任意抽取3名成员,记其中达到“日行一万步,健康你一生”标准的人数为
,求
的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,过椭圆的焦点且与长轴垂直的弦长为1.
(1)求椭圆C的方程;
(2)设点M为椭圆上第一象限内一动点,A,B分别为椭圆的左顶点和下顶点,直线MB与x轴交于点C,直线MA与y轴交于点D,求证:四边形ABCD的面积为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某水果经销商为了对一批刚上市水果进行合理定价,将该水果按事先拟定的价格进行试销,得到一组销售数据,如表所示:
试销单价 | 16 | 17 | 18 | 19 | 20 |
日销售量 | 168 | 146 | 120 | 90 | 56 |
(1)已知变量
具有线性相关关系,求该水果日销售量
(公斤)关于试销单价
(元/公斤)的线性回归方程,并据此分析销售单价
时,日销售量的变化情况;
(2)若该水果进价为每公斤
元,预计在今后的销售中,日销售量和售价仍然服从(1)中的线性相关关系,该水果经销商如果想获得最大的日销售利润,此水果的售价![]()
应定为多少元?
(参考数据及公式:
,
,
,线性回归方程
,
,
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex(ax+b)-x2-4x,曲线y=f(x)在点(0,f(0))处的切线方程为y=4x+4.
(Ⅰ)求a,b的值;
(Ⅱ)讨论f(x)的单调性.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】请你设计一个包装盒,如图所示,
是边长为
的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得
四个点重合于图中的点
,正好形成一个正四棱柱形状的包装盒,
在
上,是被切去的一个等腰直角三角形斜边的两个端点,设
(
).
![]()
(1)某广告商要求包装盒的侧面积![]()
最大,试问
应取何值?
(2)某厂商要求包装盒的容积
最大,试问
应取何值?并求出此时包装盒的高与底面边长的比值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com