精英家教网 > 高中数学 > 题目详情
F1、F2是椭圆
x2
9
+
y2
7
=1
的两个焦点,A为椭圆上一点,且∠F1AF2=60°,则△F1AF2的面积为(  )
A.
7
3
3
B.
7
2
C.
7
4
D.
7
5
2
依题意,作图如下:
∵a2=9,b2=7,
∴c2=a2-b2=2,
又|AF1|+|AF2|=2a=6,|F1F2|=2c=2
2
,∠F1AF2=60°,
在△F1AF2中,由余弦定理得:
|F1F2|2=|AF1|2+|AF2|2-2|AF1|•|AF2|cos∠F1AF2
=(|AF1|+|AF2|)2-3|AF1|•|AF2|,
即4c2=4a2-3|AF1|•|AF2|,
∴3|AF1|•|AF2|=4b2=28,
∴|AF1|•|AF2|=
28
3

∴△F1AF2的面积S=
1
2
|AF1|•|AF2|sin∠F1AF2=
1
2
×
28
3
×
3
2
=
7
3
3

故选:A.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

过椭圆
x2
36
+
y2
25
=1的焦点F1作直线l交椭圆于A、B两点,F2是此椭圆的另一个焦点,则△ABF2的周长为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知一个椭圆的中心在原点,左焦点为F(-
3
,0)
,且过D(2,0).
(1)求该椭圆的标准方程;
(2)若P是椭圆上的动点,点A(1,0),求线段PA中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
,其左、右两焦点分别为F1、F2.直线L经过椭圆C的右焦点F2,且与椭圆交于A、B两点.若A、B、F1构成周长为4
2
的△ABF1,椭圆上的点离焦点F2最远距离为
2
+1
,且弦AB的长为
4
2
3
,求椭圆和直线L的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设P为椭圆
x2
16
+
y2
9
=1
上的一点,F1、F2是椭圆的焦点,若|PF1|:|PF2|=3:1,则∠F1PF2的大小为(  )
A.30°B.60°C.90°D.120°

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,椭圆中心在坐标原点,F为左焦点,当
FB
AB
时,其离心率为
5
-1
2
,此类椭圆被称为“黄金椭圆”,类比“黄金椭圆”,可推算出“黄金双曲线”的离心率为(  )
A.
5
+1
2
B.
5
-1
2
C.
5
+1
D.
5
-1

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知动点P(x,y)满足:
(x+1)2+y2
+
(x-1)2+y2
=4,则点P的轨迹的离心率是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆:
x2
a2
+
y2
b2
=1
(a>b>0),左右焦点分别是F1,F2,焦距为2c,若直线y=
3
(x+c)
与椭圆交于M点,满足∠MF1F2=2∠MF2F1,则离心率是(  )
A.
2
2
B.
3
-1
C.
3
-1
2
D.
3
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的长轴为A1A2,B为短轴一端点,若∠A1BA2=120°,则椭圆的离心率为(  )
A.
6
3
B.
3
3
C.
3
2
D.
1
2

查看答案和解析>>

同步练习册答案