精英家教网 > 高中数学 > 题目详情
如图,椭圆中心在坐标原点,F为左焦点,当
FB
AB
时,其离心率为
5
-1
2
,此类椭圆被称为“黄金椭圆”,类比“黄金椭圆”,可推算出“黄金双曲线”的离心率为(  )
A.
5
+1
2
B.
5
-1
2
C.
5
+1
D.
5
-1

类比“黄金椭圆”,在黄金双曲线中,|OA|=a,|OB|=b,|OF|=c,
FB
AB
时,|BF|2+|AB|2=|AF|2
∴b2+c2+c2=a2+c2+2ac,
∵b2=c2-a2,整理得c2=a2+ac,
∴e2-e-1=0,解得 e=
5
+1
2
,或 e=
-
5
+1
2
(舍去).
故黄金双曲线的离心率e=
5
+1
2

故选A.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知c是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的半焦距,则
b+c
a
的取值范围是(  )
A.(1,+∞)B.(
2
,+∞)
C.(1,
2
D.(1,
2
]

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设椭圆
x2
6
+
y2
2
=1和双曲线
x2
2
-
y2
2
=1的公共焦点为F1,F2,P是两曲线的一个交点,则∠F1PF2=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知P为椭圆
x2
16
+
y2
9
=1
上的一点,B1,B2分别为椭圆的上、下顶点,若△PB1B2的面积为6,则满足条件的点P的个数为(  )
A.0B.2C.4D.6

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

F1、F2是椭圆
x2
9
+
y2
7
=1
的两个焦点,A为椭圆上一点,且∠F1AF2=60°,则△F1AF2的面积为(  )
A.
7
3
3
B.
7
2
C.
7
4
D.
7
5
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

由半椭圆
x2
a2
+
y2
b2
=1
(x≥0)与半椭圆
x2
b2
+
y2
c2
=1
(x≤0)合成的曲线称作“果圆”,如图所示,其中a2=b2+c2,a>b>c>0.由右椭圆
x2
a2
+
y2
b2
=1
(x≥0)的焦点F0和左椭圆
x2
b2
+
y2
c2
=1
(x≤0)的焦点F1,F2确定的△F0F1F2叫做果圆的焦点三角形,若果圆的焦点三角形为锐角三角形,则右椭圆
x2
a2
+
y2
b2
=1
(x≥0)的离心率的取值范围为(  )
A.(
1
3
,1)
B.(
2
3
,1)
C.(
3
3
,1)
D.(0,
3
3
)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆
x2
4
+y2=1
的左、右焦点分别为F1,F2,点P在椭圆上,若P,F1,F2是一个直角三角形的三个顶点,则点P到x轴的距离为(  )
A.
1
2
B.
3
3
C.
1
2
3
3
D.以上均不对

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

以椭圆上任意一点与焦点所连接的线段为直径的圆与以长轴为直径的圆的位置关系是(  )
A.相离B.相交C.内切D.无法确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若直线y=
3
2
x
与椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的交点在长轴上的射影恰好为椭圆的焦点,则椭圆的离心率是(  )
A.
2
2
B.2C.
2
-1
D.
1
2

查看答案和解析>>

同步练习册答案