精英家教网 > 高中数学 > 题目详情
由半椭圆
x2
a2
+
y2
b2
=1
(x≥0)与半椭圆
x2
b2
+
y2
c2
=1
(x≤0)合成的曲线称作“果圆”,如图所示,其中a2=b2+c2,a>b>c>0.由右椭圆
x2
a2
+
y2
b2
=1
(x≥0)的焦点F0和左椭圆
x2
b2
+
y2
c2
=1
(x≤0)的焦点F1,F2确定的△F0F1F2叫做果圆的焦点三角形,若果圆的焦点三角形为锐角三角形,则右椭圆
x2
a2
+
y2
b2
=1
(x≥0)的离心率的取值范围为(  )
A.(
1
3
,1)
B.(
2
3
,1)
C.(
3
3
,1)
D.(0,
3
3
)

连结F0F1、F0F2
根据“果圆”关于x轴对称,可得△F1F0F2是以F1F2为底面的等腰三角形,
∵△F0F1F2是锐角三角形,
∴等腰△F0F1F2的顶角为锐角,即∠F1F0F2∈(0,
π
2
).
由此可得|0F0|>|0F1|,
∵|0F0|、|0F1|分别是椭圆
x2
a2
+
y2
b2
=1
x2
b2
+
y2
c2
=1
的半焦距,
∴c>
b2-c2
,平方得c2>b2-c2
又∵b2=a2-c2,∴c2>a2-2c2,解得3c2>a2
两边都除以a2,得3•(
c
a
)2
>1,解之得
c
a
3
3

∵右椭圆
x2
a2
+
y2
b2
=1
(x≥0)的离心率e=
c
a
∈(0,1),
∴所求离心率e的范围为(
3
3
,1).
故选:C
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知椭圆方程为
x2
16
+
y2
m2
=1(m>0)
,直线y=
2
2
x
与该椭圆的一个交点M在x轴上的射影恰好是椭圆的右焦点,则m的值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的一个焦点到相应准线的距离为
5
4
,离心率为
2
3
,则椭圆的短轴长为(  )
A.
5
2
B.4
5
C.2
5
D.
5

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
2
2
,左、右焦点分别是F1,F2,过点F1的直线l交C于A,B两点,且△ABF2的周长为4
2
.则椭圆C的方程为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,椭圆中心在坐标原点,F为左焦点,当
FB
AB
时,其离心率为
5
-1
2
,此类椭圆被称为“黄金椭圆”,类比“黄金椭圆”,可推算出“黄金双曲线”的离心率为(  )
A.
5
+1
2
B.
5
-1
2
C.
5
+1
D.
5
-1

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆E:
x2
4
+y2=1
,椭圆E的内接平行四边形的一组对边分别经过它的两个焦点(如图),则这个平行四边形面积的最大值是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆
x2
a2
+
y2
b2
=1(a>b>0)上任意一点到两焦点的距离分别为d1,d2,焦距为2c,若d1,2c,d2成等差数列,则椭圆的离心率为(  )
A.
1
2
B.
2
2
C.
3
2
D.
3
4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设直线l过点P(0,3),和椭圆
x2
9
+
y2
4
=1
顺次交于A、B两点,则
AP
PB
的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

【文科】已知点A,B是椭圆
x2
m2
+
y2
n2
=1(m>0,n>0)上两点,且
AO
BO
,则λ=______.

查看答案和解析>>

同步练习册答案