精英家教网 > 高中数学 > 题目详情
【文科】已知点A,B是椭圆
x2
m2
+
y2
n2
=1(m>0,n>0)上两点,且
AO
BO
,则λ=______.
∵点A,B是椭圆
x2
m2
+
y2
n2
=1(m>0,n>0)上两点,且
AO
BO

∴A、O、B 共线,
∴由椭圆的对称性知,A、B关于原点O对称,
那么
AO
=
OB
=-
BO

∴λ=-1.
故答案为:-1.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

由半椭圆
x2
a2
+
y2
b2
=1
(x≥0)与半椭圆
x2
b2
+
y2
c2
=1
(x≤0)合成的曲线称作“果圆”,如图所示,其中a2=b2+c2,a>b>c>0.由右椭圆
x2
a2
+
y2
b2
=1
(x≥0)的焦点F0和左椭圆
x2
b2
+
y2
c2
=1
(x≤0)的焦点F1,F2确定的△F0F1F2叫做果圆的焦点三角形,若果圆的焦点三角形为锐角三角形,则右椭圆
x2
a2
+
y2
b2
=1
(x≥0)的离心率的取值范围为(  )
A.(
1
3
,1)
B.(
2
3
,1)
C.(
3
3
,1)
D.(0,
3
3
)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
3
3
,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l的距离为
2
2

(Ⅰ)求a,b的值;
(Ⅱ)C上是否存在点P,使得当l绕F转到某一位置时,有
OP
=
OA
+
OB
成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆
x2
25
+
y2
9
=1上的点M到焦点F1的距离为2,N为MF1的中点,则|ON|(O为坐标原点)的值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若直线y=
3
2
x
与椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的交点在长轴上的射影恰好为椭圆的焦点,则椭圆的离心率是(  )
A.
2
2
B.2C.
2
-1
D.
1
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设F1,F2是椭圆
x2
4
+y2=1
的两个焦点,点P在椭圆上,且
PF1
PF2
=0
,则△F1PF2的面积为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆
x2
16
+
y2
9
=1
的左、右焦点为F1、F2,一直线过F1交椭圆于A、B,则△ABF2的周长为(  )
A.8B.14C.16D.20

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设P是椭圆
x2
a2
+
y2
b2
=1(a>0,b>0)
上的点,F1,F2是其焦点,若|PO|是|PF1|、|PF2|的等差中项,则P点的个数是(  )
A.0B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线=1的焦点到渐近线的距离为(   )
A.2B.3 C.4D.5

查看答案和解析>>

同步练习册答案