精英家教网 > 高中数学 > 题目详情
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
3
3
,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l的距离为
2
2

(Ⅰ)求a,b的值;
(Ⅱ)C上是否存在点P,使得当l绕F转到某一位置时,有
OP
=
OA
+
OB
成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.
(I)设F(c,0),直线l:x-y-c=0,
由坐标原点O到l的距离为
2
2

|0-0-c|
2
=
2
2
,解得c=1
e=
c
a
=
3
3
,∴a=
3
,b=
2

(II)由(I)知椭圆的方程为C:
x2
3
+
y2
2
=1

设A(x1,y1)、B(x2,y2
由题意知l的斜率为一定不为0,故不妨设l:x=my+1
代入椭圆的方程中整理得(2m2+3)y2+4my-4=0,显然△>0.
由韦达定理有:y1+y2=-
4m
2m2+3
y1y2=-
4
2m2+3
,①
假设存在点P,使
OP
=
OA
+
OB
成立,则其充要条件为:
点P的坐标为(x1+x2,y1+y2),
点P在椭圆上,即
(x1+x2)2
3
+
(y1+y2)2
2
=1

整理得2x12+3y12+2x22+3y22+4x1x2+6y1y2=6.
又A、B在椭圆上,即2x12+3y12=6,2x22+3y22=6、
故2x1x2+3y1y2+3=0②
将x1x2=(my1+1)(my2+1)=m2y1y2+m(y1+y2)+1及①代入②解得m2=
1
2

y1+y2=
2
2
或-
2
2

x1+x2=-
4m2
2m2+3
+2=
3
2
,即P(
3
2
,±
2
2
)

m=
2
2
时,P(
3
2
,-
2
2
),l:x=
2
2
y+1

m=-
2
2
时,P(
3
2
2
2
),l:x=-
2
2
y+1
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

椭圆的一个焦点到相应准线的距离为
5
4
,离心率为
2
3
,则椭圆的短轴长为(  )
A.
5
2
B.4
5
C.2
5
D.
5

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆
x2
a2
+
y2
b2
=1(a>b>0)上任意一点到两焦点的距离分别为d1,d2,焦距为2c,若d1,2c,d2成等差数列,则椭圆的离心率为(  )
A.
1
2
B.
2
2
C.
3
2
D.
3
4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设直线l过点P(0,3),和椭圆
x2
9
+
y2
4
=1
顺次交于A、B两点,则
AP
PB
的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

动点P为椭圆
x2
25
+
y2
16
=1
上任意一点,左右焦点分别是F1,F2,直线l为∠F1PF2的外角平分线,过F1作直线l的垂线,垂足为Q,则点Q的轨迹方程是(  )
A.x2+y2=25B.x2+y2=16C.x2-y2=25D.x22y2=16

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆
x2
a2
+
y2
b2
=1(a>b>0)
,B为上顶点,F为左焦点,A为右顶点,且右顶点A到直线FB的距离为
2
b
,则该椭圆的离心率为(  )
A.
2
2
B.2-
2
C.
2
-1
D.
3
-
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知P是椭圆上一点,F是椭圆的一个焦点,则以线段PF为直径的圆和以椭圆长轴为直径的圆的位置关系是(  )
A.相离B.内切
C.内含D.可以内切,也可以内含

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

【文科】已知点A,B是椭圆
x2
m2
+
y2
n2
=1(m>0,n>0)上两点,且
AO
BO
,则λ=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,抛物线形拱桥的顶点距水面4m时,测得拱桥内水面宽为16m;当水面升高3m后,拱桥内水面的宽度为______m.

查看答案和解析>>

同步练习册答案