精英家教网 > 高中数学 > 题目详情
5.函数f(x)=$\sqrt{{{log}_{\frac{3}{4}}}(2x-1)}$的定义域为$(\frac{1}{2},1]$.

分析 根据对数函数的性质求出函数的定义域即可.

解答 解:由题意得:
0<2x-1≤1,
解得:$\frac{1}{2}$<x≤1,
故答案为:$(\frac{1}{2},1]$.

点评 本题考查了求函数的定义域问题,考查对数函数的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.某公园有一个直角三角形地块,现计划把它改造成一块矩形和两块三角形区域.如图,矩形区域用于娱乐城设施的建设,三角形BCD区域用于种植甲种观赏花卉,三角形CAE区域用于种植乙种观赏花卉.已知OA=4千米,OB=3千米,∠AOB=90°,甲种花卉每平方千米造价1万元,乙种花卉每平方千米造价4万元,设OE=x千米.试建立种植花卉的总造价为y(单位:万元)关于x的函数关系式;求x为何值时,种植花卉的总造价最小,并求出总造价.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=$\left\{\begin{array}{l}x(x+1)\;,\;\;\;x>0\\ x(x-1)\;,\;\;\;\;x<0\end{array}$.则f(f(-1))=6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数y=f(x)的图象与直线x=1的交点有几个(  )
A.1B.0C.0或1D.0或2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=ax-1+3(a>0,且a≠1)的图象一定过定点(1,4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列命题的叙述:
①若p:?x>0,x2-x+1>0,则¬p:?x0≤0,x02-x0+1≤0;
 ②三角形三边的比是3:5:7,则最大内角为$\frac{2}{3}$π;
③若$\overrightarrow{a}$•$\overrightarrow{b}$=$\overrightarrow{b}$•$\overrightarrow{c}$,则$\overrightarrow{a}$=$\overrightarrow{c}$;
 ④ac2<bc2是a<b的充分不必要条件,
其中真命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知a,b,c分别为△ABC三个内角A,B,C的对边,且$\sqrt{3}$bsinA+acosB-2a=0.
(1)求∠B的大小;
(2)若b=$\sqrt{3}$,△ABC的面积为$\frac{\sqrt{3}}{2}$,求a,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(1)已知a,b是常数,且a>0,b>0,a≠b,x,y∈(0,+∞),且x+y=m.
求证:$\frac{a^2}{x}$+$\frac{b^2}{y}$≥$\frac{{{{(a+b)}^2}}}{m}$,并指出等号成立的条件;
(2)求函数f(x)=$\frac{12}{x}$+$\frac{9}{1-3x}$,x∈(0,$\frac{1}{3}$)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知:四棱锥P-ABCD的底面为正方形,PA⊥底面ABCD,E、F分别为AB、PD的中点,PA=a,∠PDA=45°
(1)求证:AF∥平面PCE;  
(2)求证:平面PCE⊥平面PCD;
(3)求点D到平面PCE的距离.

查看答案和解析>>

同步练习册答案