精英家教网 > 高中数学 > 题目详情
7.在等比数列{an}中,a1+an=82,a3•an-2=81,且数列{an}的前n项和Sn=121,则此数列的项数n等于(  )
A.4B.5C.6D.7

分析 由题意易得a1和an是方程x2-82x+81=0的两根,求解方程得到两根,分数列递增和递减可得a1,an,再由Sn=121得q,进一步可得n值.

解答 解:由等比数列的性质可得a1an=a3•an-2=81,
又a1+an=82,
∴a1和an是方程x2-82x+81=0的两根,
解方程可得x=1或x=81,
若等比数列{an}递增,则a1=1,an=81,
∵Sn=121,∴$\frac{{a}_{1}-{a}_{n}q}{1-q}$=$\frac{1-81q}{1-q}$=121,
解得q=3,∴81=1×3n-1,解得n=5;
若等比数列{an}递减,则a1=81,an=1,
∵Sn=121,∴$\frac{{a}_{1}-{a}_{n}q}{1-q}$=$\frac{81-q}{1-q}$=121,
解得q=$\frac{1}{3}$,∴1=81×($\frac{1}{3}$)n-1,解得n=5.
综上,数列的项数n等于5.
故选:B.

点评 本题考查等比数列的求和公式和通项公式,涉及等比数列的性质和韦达定理,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.设△ABC的内角A,B,C的对边分别为a,b,c,且a=2,b=3,cosC=$\frac{1}{3}$,则sinA=$\frac{{4\sqrt{2}}}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.随机事件的概率范围是(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.化简(1+tan1°)•(1+tan2°)•(1+tan43°)•(1+tan44°)的结果为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.数列{bn}满足bn=6bn-1+2n+1(n≥2,n∈N*),b1=4.
(1)证明数列{$\frac{{b}_{n}}{{2}^{n}}$+1}是等比数列,并求数列{bn}的通项公式;
(2)求数列{bn}的前n项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.解方程组$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}-2x-6y+6=0}\\{{x}^{2}+{y}^{2}-6x-10y+30=0}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图所示,在平面直角坐标系中,ABCDEF为正六边形,边长为1,BE在x轴上,BE的中点是坐标原点O.
(1)写出与向量$\overrightarrow{OF}$相等的一个向量,其起点与终点是A、B、O、E、F中的两个点.
(2)设向量$\overrightarrow{a}$=$\overrightarrow{OE}$+$\overrightarrow{OF}$,求向量$\overrightarrow{a}$的坐标,并在图中画出向量$\overrightarrow{a}$的负向量,要求所画向量的起点与终点是A、B、O、E、F中的两个点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.计算$\frac{sin110°sin20°}{co{s}^{2}25°-si{n}^{2}25°}$的值为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若点(3,$\sqrt{3}$)到直线x+my-4=0的距离等于1,则m的值为0或$\sqrt{3}$.

查看答案和解析>>

同步练习册答案