分析 由余弦定理可得:解得c=3.△ABC是等腰三角形.于是cosC=$\frac{1}{3}$=sin$\frac{A}{2}$,cos$\frac{A}{2}$=$\sqrt{1-si{n}^{2}\frac{A}{2}}$.利用sinA=2sin$\frac{A}{2}$cos$\frac{A}{2}$即可得出.
解答 解:由余弦定理可得:c2=a2+b2-2abcosC=22+32-2×2×3×$\frac{1}{3}$=9,
解得c=3.
∴△ABC是等腰三角形.
∴cosC=$\frac{1}{3}$=sin$\frac{A}{2}$,
cos$\frac{A}{2}$=$\sqrt{1-si{n}^{2}\frac{A}{2}}$=$\frac{2\sqrt{2}}{3}$.
∴sinA=2sin$\frac{A}{2}$cos$\frac{A}{2}$=$\frac{{4\sqrt{2}}}{9}$,
故答案为:$\frac{4\sqrt{2}}{9}$.
点评 本题考查了余弦定理、等腰三角形的性质、倍角公式、同角三角函数基本关系式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | -$\sqrt{3}$ | C. | 1 | D. | -1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{5π}{6}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①② | B. | ②③ | C. | ③④ | D. | ①④ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com