精英家教网 > 高中数学 > 题目详情
如图所示,设椭圆
x2
a2
+
y2
b2
=1(a>b>0)的面积为abπ,过坐标原点的直线l、x轴正半轴及椭圆围成两区域面积分别设为s、t,则s关于t的函数图象大致形状为图中的(  )
A.B.C.D.

根据椭圆的对称性,知s+t=
1
2
abπ,即s=-t+
1
2
abπ,
∴关于t的函数图象应该是斜率小于0的直线
故选B
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知椭圆C的左、右焦点坐标分别是(-
3
,0),(
3
,0)
,离心率是
3
2
,则椭圆C的方程为(  )
A.
x2
2
+y2=1
B.
x2
4
+y2=1
C.x2+
y2
2
=1
D.x2+
y2
4
=1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆
x2
16
+
y2
25
=1
的焦点坐标是(  )
A.(±4,0)B.(0,±4)C.(±3,0)D.(0,±3)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知F1、F2是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的两个焦点,P是椭圆C上的一点,若∠F1PF2=60°,且△PF1F2的面积为3
3
,则b=(  )
A.2B.3C.6D.9

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设F1,F2是椭圆
x2
4
+y2=1
的两个焦点,点P在椭圆上,且
PF1
PF2
=0
,则△F1PF2的面积为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦点分别为F1,F2,若椭圆C上恰好有6个不同的点P,使得△F1F2P为等腰三角形,则椭圆C的离心率的取值范围是(  )
A.(
1
3
2
3
)
B.(
1
2
,1)
C.(
2
3
,1)
D.(
1
3
1
2
)∪(
1
2
,1)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

P为椭圆
x2
5
+
y2
4
=1
上的点,F1,F2是其两个焦点,若∠F1PF2=30°,则△F1PF2的面积是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆
x2
9
+
y2
5
=1,过右焦点F作不垂直于x轴的弦交椭圆于B两点,AB的垂直平分线交x轴于N,则|NF|:|AB|等于(  )
A.
1
2
B.
1
3
C.
2
3
D.
1
4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线的虚轴长是实轴长的2倍,则实数的值是(     )
A.B.C.D.

查看答案和解析>>

同步练习册答案