精英家教网 > 高中数学 > 题目详情
13.计算:${27}^{\frac{2}{3}}$+($\frac{1}{2}$)-2+${log}_{2}\frac{1}{8}$+1g100+($\sqrt{5}$-1)0

分析 ${27}^{\frac{2}{3}}$+($\frac{1}{2}$)-2+${log}_{2}\frac{1}{8}$+1g100+($\sqrt{5}$-1)0=${3}^{3×\frac{2}{3}}$+22-3+2+1,从而解得.

解答 解:${27}^{\frac{2}{3}}$+($\frac{1}{2}$)-2+${log}_{2}\frac{1}{8}$+1g100+($\sqrt{5}$-1)0
=${3}^{3×\frac{2}{3}}$+22-3+2+1=13.

点评 本题考查了指数与对数的运算及应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.对于函数f(x)=ax3+bx+c(a,b∈R,c∈Z),选取a,b,c的一组值计算f(1)和f(-1),所得到的结果一定不可能是(  )
A.5和9B.2和8C.6和6D.7和4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)满足条件:①定义域为R,且对任意x∈R,f(x)<1;②对任意小于1的正实数a,存在x0,使f(x0)=f(-x0)>a,则f(x)可能是(  )
A.$\frac{|x|+1}{|x|-1}$B.$\frac{{x}^{2}}{{x}^{2}+1}$C.$\frac{x}{\sqrt{{x}^{2}+1}}$D.$\frac{x+1}{{x}^{2}+1}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数f(x)=log2(-4x+5)的单调性是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数y=4x-2x+1+2,x∈[-1,2].
(1)设t=2x,求t的取值范围;
(2)求函数的最值,并求出取得最值时对应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.第16届亚运会于2010年11月12日至27日在中国广州进行,为了搞好接待工作,组委会招募了 16 名男志愿者和 14名女志愿者,调查发现,男、女志愿者中分别有 10 人和 6 人喜爱运动,其余不喜爱.
(1)根据以上数据完成以下 2×2 列联表:
喜爱运动不喜爱运动总计
1016
614
总计30
(2)根据列联表的独立性检验,能否在犯错误的概率不超过0.10 的前提下认为性  别与喜爱运动有关?
参考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中 n=a+b+c+d.
P( k2≥k00.400.250.100.050.010
    k00.7081.3232.7063.8416.635

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设一球的半径为$tan\frac{7π}{6}$,则该球的表面积、体积分别为$\frac{4}{3}π$、$\frac{4\sqrt{3}}{27}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知f(x)=3ax-2a+1在区间(-1,1)内存在x0,使f(x0)=0,则实数a的取值范围是(  )
A.$(-1,\frac{1}{5})$B.$(-\frac{1}{5},+∞)$C.$(-∞,-1)∪(\frac{1}{5},+∞)$D.(-∞,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知角α的终边经过点(-2,1),则cos2α=(  )
A.-$\frac{3}{5}$B.$\frac{3}{5}$C.$\frac{2}{5}$D.-$\frac{2}{5}$

查看答案和解析>>

同步练习册答案