精英家教网 > 高中数学 > 题目详情
19.如图,在平面直角坐标系xOy中,设a1=2,有一组圆心在x轴正半轴上的圆An(n=1,2,…)与x轴的交点分别为A0(1,0)和An+1(an+1,0),过圆心An作垂直于x轴的直线ln,在第一象限与圆An交于点Bn(an,bn
(Ⅰ)试求数列{an}的通项公式
(Ⅱ)设曲边形An+1BnBn+1(阴影所示)的面积为Sn,若对任意n∈N*,$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+…+$\frac{1}{{S}_{n}}$≤m恒成立,试求实数m的取值范围.

分析 (Ⅰ)由条件可得an+1-1=2(an-1),所以数列{an-1}是等比数列,从而${a}_{n}={2}^{n-1}+1$;
(Ⅱ)由(Ⅰ)可得各点坐标为Bn(2n-1+1,2n-1),Bn+1(2n+1,2n),且${A}_{n}({2}^{n-1}+1,0)$,${A}_{n+1}({2}^{n}+1,0)$,从而${S}_{n}={S}_{梯形{A}_{n}{B}_{n}{B}_{n+1}{A}_{n+1}}$-${S}_{扇形{A}_{n}{B}_{n}{A}_{n+1}}$,计算可得$\frac{1}{{S}_{n}}=\frac{4}{6-π}•(\frac{1}{4})^{n-1}$,从而$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+…+$\frac{1}{{S}_{n}}$=$\frac{16}{18-3π}[1-(\frac{1}{4})^{n}]$,所以实数m≥$\frac{16}{18-3π}$.

解答 解:(Ⅰ)由条件可得,an+1-1=2(an-1),
∴数列{an-1}是等比数列.
又∵a1-1=1,
所以${a}_{n}-1={2}^{n-1}$,
${a}_{n}={2}^{n-1}+1$;
(Ⅱ)∵bn=${a}_{n}-1={2}^{n-1}$,
∴Bn(2n-1+1,2n-1),
∴Bn+1(2n+1,2n),且${A}_{n}({2}^{n-1}+1,0)$,${A}_{n+1}({2}^{n}+1,0)$,
${S}_{n}={S}_{梯形{A}_{n}{B}_{n}{B}_{n+1}{A}_{n+1}}$-${S}_{扇形{A}_{n}{B}_{n}{A}_{n+1}}$
=$\frac{1}{2}×{2}^{n-1}×({2}^{n-1}+{2}^{n})$-$\frac{1}{4}π×({2}^{n-1})^{2}$
=$\frac{6-π}{4}×{4}^{n-1}$,
所以$\frac{1}{{S}_{n}}=\frac{4}{6-π}•(\frac{1}{4})^{n-1}$,
所以$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+…+$\frac{1}{{S}_{n}}$=$\frac{4}{6-π}[1+\frac{1}{4}+…+(\frac{1}{4})^{n-1}]$
=$\frac{4}{6-π}•\frac{1-(\frac{1}{4})^{n}}{1-\frac{1}{4}}$
=$\frac{16}{18-3π}[1-(\frac{1}{4})^{n}]$
<$\frac{16}{18-3π}$,
故可得实数m≥$\frac{16}{18-3π}$.

点评 本题考查了递推式的应用,面积的求法,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知双曲线的方程为$\frac{{x}^{2}}{m}$-$\frac{{y}^{2}}{2m}$=1,则双曲线的离心率为(  )
A.$\sqrt{3}$B.$\sqrt{5}$C.$\sqrt{3}$或$\frac{\sqrt{6}}{2}$D.$\sqrt{3}$或$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.某校从参加某次知识竞赛的同学中,选取60名同学的成绩(百分制)分成6组后,得到部分频率分布直方图(如图),根据图形中的信息,可估计本次考试的平均分是71.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设|$\overrightarrow{e}$|=1,且$\overrightarrow{AB}$=3$\overrightarrow{e}$,$\overrightarrow{BC}$=-5$\overrightarrow{e}$,若$\overrightarrow{AB}$=λ$\overrightarrow{AC}$,则λ=(  )
A.$\frac{2}{3}$B.$\frac{3}{2}$C.-$\frac{3}{2}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知圆x2+y2-4x-5=0的弦AB的中点为Q(3,1),直线AB交x轴于点P,则|PA|•|PB|=(  )
A.4B.5C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知直线l在直角坐标系xOy中的参数方程为$\left\{\begin{array}{l}{x=4+tcosα}\\{y=2+tsinα}\end{array}\right.$(t为参数,α为倾斜角),曲线C的极坐标方程为ρ=4cosθ(其中坐标原点O为极点,x轴非负半轴为极轴,取相同单位长度)
(1)写出曲线C的直角坐标方程
(2)若曲线C与直线l相交于不同的两点M、N,设P(4,2),求|PM|+|PN|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设函数f(x)为偶函数,当x∈(0,+∞)时,f(x)=log2x,则f(-$\sqrt{2}$)=(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.己知各项均为正数的数列{an}满足an+12=2an2+anan+1,且a2+a4=2a3+4,其中n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{bn}满足bn=$\frac{{n{a_n}}}{{(2n+1){{.2}^n}}}$是否存在正整数m,n(1<m<n),使得b1,bm,bn成等比数列?若存在,求出所有的m,n的值;若不存在,请说明理由;
(Ⅲ)令cn=$\frac{{{{(n+1)}^2}+1}}{{n(n+1){a_{n+2}}}}$,记数列{cn}的前n项和为Sn,其中n∈N*,求Sn的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.直线l在x轴上,y轴上的截距的倒数之和为常数$\frac{1}{k}$,则该直线必过定点(  )
A.(0,0)B.(1,1)C.(k,k)D.($\frac{1}{k}$,$\frac{1}{k}$)

查看答案和解析>>

同步练习册答案