精英家教网 > 高中数学 > 题目详情
9.直线l在x轴上,y轴上的截距的倒数之和为常数$\frac{1}{k}$,则该直线必过定点(  )
A.(0,0)B.(1,1)C.(k,k)D.($\frac{1}{k}$,$\frac{1}{k}$)

分析 根据题意,写出直线l的截距式方程$\frac{x}{a}$+$\frac{y}{b}$=1,利用$\frac{1}{a}$+$\frac{1}{b}$=$\frac{1}{k}$,判断该直线必过的定点是什么.

解答 解:直线l在x轴上,y轴上的截距分别为a,b,且ab≠0,
∴直线方程为$\frac{x}{a}$+$\frac{y}{b}$=1;
又∵$\frac{1}{a}$+$\frac{1}{b}$=$\frac{1}{k}$,
∴$\frac{k}{a}$+$\frac{k}{b}$=1;
∴该直线必过定点(k,k).
故选:C.

点评 本题考查了直线恒过定点的应用问题,解题时应设出直线的截距式方程,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.如图,在平面直角坐标系xOy中,设a1=2,有一组圆心在x轴正半轴上的圆An(n=1,2,…)与x轴的交点分别为A0(1,0)和An+1(an+1,0),过圆心An作垂直于x轴的直线ln,在第一象限与圆An交于点Bn(an,bn
(Ⅰ)试求数列{an}的通项公式
(Ⅱ)设曲边形An+1BnBn+1(阴影所示)的面积为Sn,若对任意n∈N*,$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+…+$\frac{1}{{S}_{n}}$≤m恒成立,试求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}中,a1=1,an+1=$\frac{{a}_{n}}{{a}_{n}+3}$(n∈N*
(1)求证:{$\frac{1}{{a}_{n}}$+$\frac{1}{2}$}是等比数列,并求{an}的通项公式;
(2)数列{bn}满足bn=(3n-1)•$\frac{n}{{2}^{n}}$•an,数列{bn}的前n项和为Tn,求使不等式Tn+$\frac{n}{{2}^{n-1}}$>$\frac{31}{8}$成立的正整数n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图所示的几何体中,所有棱长都相等,分析此几何体的构成,有几个面、几个顶点、几条棱?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.自变量x在什么范围取值时,下列函数的值等于0?大于0呢?小于0呢?
(1)y=3x2-6x+2;
(2)y=25-x2
(3)y=x2+6x+10;
(4)y=-3x2+12x-12.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知$\frac{π}{4}$<β<$\frac{π}{2}$,sinβ=$\frac{2\sqrt{2}}{3}$,则sin(β+$\frac{π}{3}$)=$\frac{2\sqrt{2}+\sqrt{3}}{6}$..

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知x、y满足条件$\left\{\begin{array}{l}{y≥1}\\{y≤2x+1}\\{x+y≤m}\end{array}\right.$,若z=x-y有最小值-1,则m=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图是函数y=f(x)的导函数y=f′(x)的图象,则下列判断正确的是(  )
A.在区间(-3,1)上y=f(x)是增函数B.在区间(1,3)上y=f(x)是减函数
C.在区间(4,5)上y=f(x)是增函数D.在x=2时y=f(x)取到极小值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且$|{QF}|=\frac{5}{4}|{PQ}|$.
(Ⅰ)求抛物线C的方程;
(Ⅱ)过M(4,0)的直线l与C相交于A,B两点,若$\overrightarrow{AM}=\frac{1}{2}\overrightarrow{MB}$,求直线l的方程﹒

查看答案和解析>>

同步练习册答案