分析 (Ⅰ)设Q(x0,4),代入抛物线方程,结合抛物线的定义,可得p=2,进而得到抛物线方程;
(Ⅱ)设A,B的坐标,运用向量共线的坐标表示,设直线l的方程:x=my+4,与抛物线方程联立,消去x,运用韦达定理,联立方程即可解得m,进而得到直线方程.
解答 解:(Ⅰ)设Q(x0,4),代入由y2=2px(p>0)中得x0=$\frac{8}{p}$,
所以$|{PQ}|=\frac{8}{p},|{QF}|=\frac{p}{2}+{x_0}=\frac{p}{2}+\frac{8}{p}$,
由题设得$\frac{p}{2}+\frac{8}{p}=\frac{5}{4}×\frac{8}{p}$,解得p=-2(舍去)或p=2.
所以C的方程为y2=4x.
(Ⅱ)设$A(\frac{{{y_1}^2}}{4},{y_1})$,$B(\frac{{{y_2}^2}}{4},{y_2})$
由$\overrightarrow{AM}=\frac{1}{2}\overrightarrow{MB}$,得$(4-\frac{{{y_1}^2}}{4},-{y_1})=\frac{1}{2}(-4+\frac{{{y_2}^2}}{4},{y_2})$,
所以${y_1}=-\frac{y_2}{2}$,①
设直线l的方程:x=my+4,与抛物线方程联立,
由$\left\{{\begin{array}{l}{{y^2}=4x}\\{x=my+4}\end{array}}\right.$,消去x得y2-4my-16=0,
所以$\left\{{\begin{array}{l}{{y_1}{y_2}=-16}\\{{y_1}+{y_2}=4m}\end{array}}\right.$②
由①②联立,解得${y_1}=-2\sqrt{2}$,${y_2}=4\sqrt{2}$,$m=\frac{{\sqrt{2}}}{2}$﹒
或${y_1}=2\sqrt{2}$,${y_2}=-4\sqrt{2}$,$m=-\frac{{\sqrt{2}}}{2}$,
故所求直线l的方程为$2x-\sqrt{2}y-8=0$或$2x+\sqrt{2}y-8=0$﹒
点评 本题考查抛物线的定义、方程和性质,考查直线方程和抛物线方程联立,运用韦达定理,同时考查向量共线的坐标表示,具有一定的运算量,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | (0,0) | B. | (1,1) | C. | (k,k) | D. | ($\frac{1}{k}$,$\frac{1}{k}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3+2$\sqrt{2}$ | B. | 3+$\sqrt{2}$ | C. | $\frac{3+2\sqrt{2}}{2}$ | D. | $\frac{3+\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{{a}^{2}}$ | B. | 2a2 | C. | $\frac{1}{2}$a2 | D. | $\frac{1}{2{a}^{2}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 数列2,3,5,7与数列3,2,7,5是同一个数列 | |
| B. | 同一个数在一个数列中可以重复出现 | |
| C. | 数列的通项公式是定义域为正整数集的函数 | |
| D. | 数列的通项公式是确定的 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com