三棱锥,底面为边长为的正三角形,平面平面,,为上一点,,为底面三角形中心.
(Ⅰ)求证∥面;
(Ⅱ)求证:;
(Ⅲ)设为中点,求二面角的余弦值.
(Ⅰ)先证∥ (Ⅱ)先证平面 (Ⅲ)
解析试题分析:(Ⅰ)连结交于点,连结.
为正三角形的中心,∴,
且为中点.又, ∴∥,
平面,平面
∴∥面.
(Ⅱ),且为中点, ∴,
又平面平面,
∴平面,
由(Ⅰ)知,∥,
∴平面,∴
连结,则,又,
∴平面,∴.
(Ⅲ)由(Ⅰ)(Ⅱ)知,两两互相垂直,且为中点,所以分别以所在直线为轴,建立空间直角坐标系,如图
,则
∴
设平面的法向量为,则,
令,则.
由(Ⅱ)知平面,∴为平面的法向量,
∴,
由图可知,二面角的余弦值为 .
考点:直线与平面平行的判定;直线与平面垂直的性质;二面角的平面角及求法.
点评:本题考查直线与平面的平行的判断,在与平面垂直的性质定理的应用,二面角的求法,考查空间想象能力与计算能力,以及逻辑推理能力.
科目:高中数学 来源: 题型:解答题
已知三棱锥,平面平面,AB=AD=1,AB⊥AD,DB=DC,DB⊥DC
(1) 求证:AB⊥平面ADC;
(2) 求三棱锥的体积;
(3) 求二面角的正切值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图:是⊙的直径,垂直于⊙所在的平面,PA="AC," 是圆周上不同于的任意一点,(1) 求证:平面。(2) 求二面角 P-BC-A 的大小。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,空间四边形的对棱、成的角,且,平行于与的截面分别交、、、于、、、.
(1)求证:四边形为平行四边形;
(2)在的何处时截面的面积最大?最大面积是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图甲,在平面四边形ABCD中,已知,,现将四边形ABCD沿BD折起,使平面ABD平面BDC(如图乙),设点E、F分别为棱AC、AD的中点.
(Ⅰ)求证:DC平面ABC;
(Ⅱ)设,求三棱锥A-BFE的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com