精英家教网 > 高中数学 > 题目详情

三棱锥,底面为边长为的正三角形,平面平面,上一点,为底面三角形中心.

(Ⅰ)求证∥面
(Ⅱ)求证:
(Ⅲ)设中点,求二面角的余弦值.

(Ⅰ)先证 (Ⅱ)先证平面 (Ⅲ)

解析试题分析:(Ⅰ)连结于点,连结.
为正三角形的中心,∴,
中点.又, ∴,                  
平面平面
∥面.              
(Ⅱ),且中点, ∴,
又平面平面
平面,            
由(Ⅰ)知,
平面,∴                  
连结,则,又,
平面,∴
(Ⅲ)由(Ⅰ)(Ⅱ)知,两两互相垂直,且中点,所以分别以所在直线为轴,建立空间直角坐标系,如图

,则

设平面的法向量为,则
,则.                              
由(Ⅱ)知平面,∴为平面的法向量,

由图可知,二面角的余弦值为 . 
考点:直线与平面平行的判定;直线与平面垂直的性质;二面角的平面角及求法.
点评:本题考查直线与平面的平行的判断,在与平面垂直的性质定理的应用,二面角的求法,考查空间想象能力与计算能力,以及逻辑推理能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知三棱锥,平面平面,AB=AD=1,AB⊥AD,DB=DC,DB⊥DC

(1) 求证:AB⊥平面ADC;
(2) 求三棱锥的体积;
(3) 求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥的底面是边长为2的菱形,.已知 .

(Ⅰ)证明:
(Ⅱ)若的中点,求三菱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图:是⊙的直径,垂直于⊙所在的平面,PA="AC," 是圆周上不同于的任意一点,(1) 求证:平面。(2) 求二面角 P-BC-A 的大小。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,空间四边形的对棱的角,且,平行于的截面分别交

(1)求证:四边形为平行四边形;
(2)的何处时截面的面积最大?最大面积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图甲,在平面四边形ABCD中,已知,,现将四边形ABCD沿BD折起,使平面ABD平面BDC(如图乙),设点E、F分别为棱AC、AD的中点.

(Ⅰ)求证:DC平面ABC;
(Ⅱ)设,求三棱锥A-BFE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直三棱柱中,

(1)求异面直线 与所成角的大小;
(2)求多面体的体积。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为空间四边形的边上的点,且,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,已知正方形和矩形所在的平面互相垂直, 是线段的中点。

(1)证明:∥平面
(2)求异面直线所成的角的余弦值。

查看答案和解析>>

同步练习册答案