精英家教网 > 高中数学 > 题目详情
6.某几何体的三视图如图所示,则该几何体的表面积为(  )
A.18+2πB.20+πC.20+$\frac{π}{2}$D.16+π

分析 仔细看看三视图,想象几何体的结构特征.

解答 解:根据三视图可以判断出:在正方体的上半部分角的位置挖掉四分之的圆柱

该几何体的表面积为:2×4+(4×4-4×1×1)+$\frac{1}{2}×$2π×12=20+π,
故选:B

点评 本题考查了空间几何体的三视图,空间想象能力,计算能力,注意观察能力在三视图的运用.关键能恢复几何体的结构特征.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知椭圆方程$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a$>b>0)的左右顶点为A,B,右焦点为F,若椭圆上的点到焦点F的最大距离为3,且离心率为方程2x2-5x+2=0的根,
(1)求椭圆的标准方程;
(2)若点P为椭圆上任一点,连接AP,PB并分别延长交直线l:x=4于M,N两点,求线段MN的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某几何体的三视图如图所示,则该几何体的体积是(  )
A.2π-$\frac{2}{3}$B.2π-$\frac{4}{3}$C.$\frac{5π}{3}$D.2π-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{2}$=1(a>$\sqrt{2}$)的左右焦点分别为F1,F2,离心率为e,直线l:y=ex+a,P为点F1关于直线l对称的点,若△PF1F2为等腰三角形,则a的值为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.垂直于直线x+y=0的直线l交椭圆$\frac{{x}^{2}}{1}$+$\frac{{y}^{2}}{4}$=1于M、N,且|MN|=2,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=$\frac{1+lnx}{x-1}$.
(1)证明:f(x)在(1,+∞)上为减函数;
(2)若x>1时,f(x)>$\frac{m+1}{x}$恒成立,求整数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,点F1,F2分别是椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右焦点.点A是椭圆C上一点,点B是直线AF2与椭圆C的另一交点,且满足AF1⊥x轴,∠AF2F1=30°.
(1)求椭圆C的离心率e;
(2)若△ABF1的周长为$4\sqrt{3}$,求椭圆C的标准方程;
(3)若△ABF1的面积为$8\sqrt{3}$,求椭圆C的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.f(x)=log3x,则f′(x)>1的解集为(0,$\frac{1}{ln3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在如图所示的几何体中,四边形ABCD为平行四边形,平面ABEF⊥平面ABCD,∠ACD=90°,AB=2,AD=4,ABEF为正方形,平面ABEF⊥平面ABCD,AN⊥CF,垂足为N.
(1)求证:AN⊥平面CDF;
(2)求三棱锥B-CEF的体积.

查看答案和解析>>

同步练习册答案