精英家教网 > 高中数学 > 题目详情
10.裴波那契数列的通项公式为an=$\frac{1}{{\sqrt{5}}}$[($\frac{{1+\sqrt{5}}}{2}$)n-($\frac{{1-\sqrt{5}}}{2}$)n],又称为“比内公式”,是用无理数表示有理数的一个范例,由此,a5=(  )
A.3B.5C.8D.13

分析 利用通项公式即可得出.

解答 解:∵an=$\frac{1}{{\sqrt{5}}}$[($\frac{{1+\sqrt{5}}}{2}$)n-($\frac{{1-\sqrt{5}}}{2}$)n],
∴a1=$\frac{1}{\sqrt{5}}$$(\frac{1+\sqrt{5}}{2}-\frac{1-\sqrt{5}}{2})$=$\frac{1}{\sqrt{5}}×\frac{2\sqrt{5}}{2}$=1,
同理可得:a2=1,a3=2,a4=3,a5=5.
故选:B.

点评 本题考查了裴波那契数列、数列的通项公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.若函数f(x)=$\left\{\begin{array}{l}{-x+3,-1≤x≤1}\\{1+lo{g}_{({a}^{2}-1)}(2x),2≤x≤8}\end{array}\right.$的值域是[2,5],则实数a的取值是$±\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知f(x)是定义在(0,+∞)上的函数,f'(x)是f(x)的导函数,且总有f(x)>xf'(x),则不等式f(x)>xf(1)的解集为(  )
A.(-∞,0)B.(0,1)C.(0,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若锐角△ABC的面积为10$\sqrt{3}$,且AB=8,AC=5,则BC等于7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,若sinA:sinB:sinC=3:4:5,则此三角形是(  )
A.等腰三角形B.直角三角形C.锐角三角形D.钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知不等式mx2+2mx-8≥0有解,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.一船以每小时12海里的速度向东航行,在A处看到一个灯塔B在北偏东60°,行驶4小时后,到达C处,看到这个灯塔B在北偏东15°,这时船与灯塔相距为24$\sqrt{2}$海里.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知三阶行列式$|{\begin{array}{l}8&1&6\\ 3&5&7\\ 4&9&2\end{array}}|$,则元素3的代数余子式的值为52.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设函数f(x)是定义在R上的偶函数,且对任意的x∈R,都有f(x+1)=f(x-1),已知当x∈[0,1]时,f(x)=2x-1,有以下结论:
①2是函数f(x)的一个周期;        
②函数f(x)在(1,2)上单调递减,在(2,3)上单调递增;
③函数f(x)的最大值为1,最小值为0;   
④当x∈(3,4)时,f(x)=23-x
其中,正确结论的序号是①②④.(请写出所有正确结论的序号)

查看答案和解析>>

同步练习册答案