精英家教网 > 高中数学 > 题目详情
19.已知三阶行列式$|{\begin{array}{l}8&1&6\\ 3&5&7\\ 4&9&2\end{array}}|$,则元素3的代数余子式的值为52.

分析 根据行列式的展开A21=-(1×2-6×9),即可得出结论.

解答 解:行列式$|{\begin{array}{l}8&1&6\\ 3&5&7\\ 4&9&2\end{array}}|$中元素3的代数余子式的A21=-(1×2-6×9)=52,
故答案为:52.

点评 本题考查行列式的展开,考查行列式的展开式,考查计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知a∈R,函数f(x)=2x3-3(a+1)x2+6ax.
(I)若函数f(x)在x=3处取得极值,求曲线y=f(x)在点(0,f(0))处的切线方程;
(Ⅱ)若a>$\frac{1}{2}$,函数y=f(x)在[0,2a]上的最小值是-a2,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.裴波那契数列的通项公式为an=$\frac{1}{{\sqrt{5}}}$[($\frac{{1+\sqrt{5}}}{2}$)n-($\frac{{1-\sqrt{5}}}{2}$)n],又称为“比内公式”,是用无理数表示有理数的一个范例,由此,a5=(  )
A.3B.5C.8D.13

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在数列{an}中,a1=1,an+1=1-$\frac{1}{4{a}_{n}}$,bn=$\frac{1}{2{a}_{n}-{1}_{\;}}$,其中n∈N*
(1)求证:数列{bn}为等差数列;
(2)设cn=bn+1•($\frac{1}{3}$)${\;}^{{b}_{n}}$,数列{cn}的前n项和为Tn,求Tn
(3)证明:1+$\frac{1}{\sqrt{{b}_{2}}}$+$\frac{1}{\sqrt{{b}_{3}}}$+…+$\frac{1}{\sqrt{{b}_{n}}}$≤2$\sqrt{n}$-1(n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某人为增加家庭收入,年初用49万元购买了一辆货车用于长途运输,第一年各种费用支出为6万元,以后每年都增加2万元,而每年的运输收益为25万元;
(1)求车主前n年的利润f(n)关于年数n的函数关系式,并判断他第几年开始获利超过15万元;(注:利润=总收入-总成本)
(2)若干年后,车主准备处理这辆货车,有两种方案:
方案一:利润f(n)最多时,以4万元出售这辆车;
方案二:年平均利润最大时,以13万元出售这辆车;
请你利用所学知识帮他做出决策.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.当m≠-1时,下列关于方程组$\left\{\begin{array}{l}mx+y=m+1\\ x+my=2m\end{array}\right.$的判断,正确的是(  )
A.方程组有唯一解B.方程组有唯一解或有无穷多解
C.方程组无解或有无穷多解D.方程组有唯一解或无解

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在等差数列{an}中,a1+a3=10,d=3.令bn=$\frac{1}{{{a_n}{a_{n+1}}}}$,数列{bn}的前n项和为Tn
(1)求数列{an}的通项公式;
(2)求数列{bn}的前n项和Tn
(3)是否存在正整数m,n(1<m<n),使得T1,Tm,Tn成等比数列?若存在,求出所有的m,n的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知等差数列{an}首项是1公差不为0,Sn为的前n和,且S22=S1•S4
(1)求数列{an}的通项公式;
(2)设数列bn=$\frac{1}{{{a_n}{a_{n+1}}}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知圆C:(x-a)2+(y-a)2=2a2(a>0)及其外一点A(0,2).若圆C上存在点T满足∠CAT=$\frac{π}{4}$,则实数a的取值范围是(  )
A.(-∞,1)B.$[\sqrt{3}-1,1)$C.$[\sqrt{3}-1,1]$D.$[\sqrt{3}-1,+∞)$

查看答案和解析>>

同步练习册答案