分析 (1)只要证明bn+1-bn=$\frac{1}{2{a}_{n+1}-1}$-$\frac{1}{2{a}_{n}-1}$=$\frac{1}{2-\frac{1}{2{a}_{n}}-1}$-$\frac{1}{2{a}_{n}-1}$,为常数.
(2)由(1)可得:bn=n.cn=bn+1•($\frac{1}{3}$)${\;}^{{b}_{n}}$=(n+1)$•(\frac{1}{3})^{n}$.利用“错位相减法”与等比数列的求和公式即可得出.
(3)1+$\frac{1}{\sqrt{{b}_{2}}}$+$\frac{1}{\sqrt{{b}_{3}}}$+…+$\frac{1}{\sqrt{{b}_{n}}}$≤2$\sqrt{n}$-1(n∈N*)即为:1+$\frac{1}{\sqrt{2}}$+$\frac{1}{\sqrt{3}}$+…+$\frac{1}{\sqrt{n}}$≤$2\sqrt{n}$-1.由于$\frac{1}{\sqrt{k}}$=$\frac{2}{2\sqrt{k}}$<$\frac{2}{\sqrt{k-1}+\sqrt{k}}$=2$(\sqrt{k}-\sqrt{k-1})$(k=2,3,…).利用“裂项求和方法”即可得出.
解答 (1)证明:bn+1-bn=$\frac{1}{2{a}_{n+1}-1}$-$\frac{1}{2{a}_{n}-1}$=$\frac{1}{2-\frac{1}{2{a}_{n}}-1}$-$\frac{1}{2{a}_{n}-1}$=1,又b1=1.∴数列{bn}为等差数列,首项为1,公差为1.
(2)解:由(1)可得:bn=n.
cn=bn+1•($\frac{1}{3}$)${\;}^{{b}_{n}}$=(n+1)$•(\frac{1}{3})^{n}$.
∴数列{cn}的前n项和为Tn=$2×\frac{1}{3}$+3×$(\frac{1}{3})^{2}$+$4×(\frac{1}{3})^{3}$+…+(n+1)$•(\frac{1}{3})^{n}$.
$\frac{1}{3}{T}_{n}$=$2×(\frac{1}{3})^{2}$+3×$(\frac{1}{3})^{3}$+…+n$•(\frac{1}{3})^{n}$+(n+1)$•(\frac{1}{3})^{n+1}$,
∴$\frac{2}{3}$Tn=$2×\frac{1}{3}$+$(\frac{1}{3})^{2}$+$(\frac{1}{3})^{3}$+…+$(\frac{1}{3})^{n}$-(n+1)$•(\frac{1}{3})^{n+1}$=$\frac{1}{3}$+$\frac{\frac{1}{3}(1-\frac{1}{{3}^{n}})}{1-\frac{1}{3}}$-(n+1)$•(\frac{1}{3})^{n+1}$,
可得Tn=$\frac{5}{4}$-$\frac{2n+5}{4}×\frac{1}{{3}^{n}}$.
(3)证明:1+$\frac{1}{\sqrt{{b}_{2}}}$+$\frac{1}{\sqrt{{b}_{3}}}$+…+$\frac{1}{\sqrt{{b}_{n}}}$≤2$\sqrt{n}$-1(n∈N*)即为:1+$\frac{1}{\sqrt{2}}$+$\frac{1}{\sqrt{3}}$+…+$\frac{1}{\sqrt{n}}$≤$2\sqrt{n}$-1.
∵$\frac{1}{\sqrt{k}}$=$\frac{2}{2\sqrt{k}}$<$\frac{2}{\sqrt{k-1}+\sqrt{k}}$=2$(\sqrt{k}-\sqrt{k-1})$(k=2,3,…).
∴1+$\frac{1}{\sqrt{2}}$+$\frac{1}{\sqrt{3}}$+…+$\frac{1}{\sqrt{n}}$≤1+2[($\sqrt{2}$-1)+($\sqrt{3}-\sqrt{2}$)+…+($\sqrt{n}$-$\sqrt{n-1}$)]=1+2$(\sqrt{n}-1)$=2$\sqrt{n}$-1.
∴1+$\frac{1}{\sqrt{{b}_{2}}}$+$\frac{1}{\sqrt{{b}_{3}}}$+…+$\frac{1}{\sqrt{{b}_{n}}}$≤2$\sqrt{n}$-1(n∈N*).
点评 本题考查了“错位相减法”、等比数列与等差数列的通项公式与求和公式、“裂项求和”方法、放缩法,考查了推理能力与计算能力,属于难题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f($\frac{7}{2}$)<f(1)<f($\frac{5}{2}$) | B. | f(1)<f($\frac{5}{2}$)<f($\frac{7}{2}$) | C. | f($\frac{7}{2}$)<f($\frac{5}{2}$)<f(1) | D. | f($\frac{5}{2}$)<f(1)<f($\frac{7}{2}$) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com