17£®Ä³²úÆ·¹ØË°ÓëÊг¡¹©Ó¦Á¿PµÄ¹ØÏµ½üËÆµØÂú×㣺P£¨x£©=2${\;}^{£¨1-kt£©{{£¨x-b£©}{\;}^2}}}$£¨ÆäÖÐtΪ¹ØË°µÄ˰ÂÊ£¬ÇÒt¡Ê[0£¬$\frac{1}{2}}$]£¬xΪÊг¡¼Û¸ñ£¬b£¬kΪÕý³£Êý£©£¬µ±t=$\frac{1}{8}$ʱ£¬Êг¡¹©Ó¦Á¿ÇúÏßÈçͼËùʾ£º
£¨1£©¸ù¾Ýº¯ÊýͼÏóÇók£¬bµÄÖµ£»
£¨2£©ÈôÊг¡ÐèÇóÁ¿Q£¬Ëü½üËÆÂú×ãQ£¨x£©=2${\;}^{£¨11-\frac{1}{2}x£©}}$£®µ±P=QʱµÄÊг¡¼Û¸ñΪ¾ùºâ¼Û¸ñ£¬ÎªÊ¹¾ùºâ¼Û¸ñ¿ØÖÆÔÚ²»µÍÓÚ9ÔªµÄ·¶Î§ÄÚ£¬Çó˰ÂÊtµÄ×îСֵ£®

·ÖÎö £¨1£©Äܸù¾ÝͼÏóÖª$t=\frac{1}{8}$ʱ£¬ÓÐ$\left\{\begin{array}{l}{2^{£¨1-\frac{k}{8}£©{{£¨5-b£©}^2}}}=1\\{2^{£¨1-\frac{k}{8}£©{{£¨7-b£©}^2}}}=2\end{array}\right.$£¬¼´¿ÉÇó³ök¡¢bµÄÖµ£»
£¨2£©Äܸù¾ÝÌâÒâ¹¹Ô캯Êý£¬²¢ÄÜÔÚ¶¨ÒåÓòÄÚÇóº¯ÊýµÄ×îСֵ£®

½â´ð ½â£º£¨1£©ÓÉͼ¿ÉÖª$t=\frac{1}{8}$ʱ£¬ÓÐ$\left\{\begin{array}{l}{2^{£¨1-\frac{k}{8}£©{{£¨5-b£©}^2}}}=1\\{2^{£¨1-\frac{k}{8}£©{{£¨7-b£©}^2}}}=2\end{array}\right.$½âµÃ$\left\{\begin{array}{l}k=6\\ b=5.\end{array}\right.$
£¨2£©µ±P=Qʱ£¬µÃ${2^{£¨1-6t£©{{£¨x-5£©}^2}}}={2^{11-\frac{1}{2}x}}$£¬
½âµÃ$t=\frac{1}{6}[{1-\frac{22-x}{{2{{£¨x-5£©}^2}}}}]=-\frac{1}{12}[{\frac{17}{{{{£¨x-5£©}^2}}}-\frac{1}{x-5}-2}]$£®
Áî$m=\frac{1}{x-5}$£¬¡ßx¡Ý9£¬¡à$m¡Ê£¨0£¬\frac{1}{4}]$£¬
ÔÚ$t=-\frac{1}{12}£¨17{m^2}-m-2£©$ÖУ¬¶Ô³ÆÖáΪֱÏß$m=\frac{1}{34}$£¬$\frac{1}{34}¡Ê£¨0£¬\frac{1}{4}]$£¬ÇÒͼÏ󿪿ÚÏòÏ£¬
¡à$m=\frac{1}{4}$ʱ£¬tÈ¡µÃ×îСֵ$\frac{19}{192}$£¬´Ëʱx=9£®

µãÆÀ ´ËÌâÊǸöÖ¸Êýº¯ÊýµÄ×ÛºÏÌ⣬µ«ÔÚÇó½âµÄ¹ý³ÌÖÐÒ²Óõ½Á˹¹Ô캯ÊýµÄ˼Ïë¼°¶þ´Îº¯ÊýÔÚ¶¨ÒåÓòÄÚÇó×îÖµµÄ֪ʶ£®¿¼²éµÄÖªÊ¶È«Ãæ¶øµ½Î»£¡

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÔÚ¡÷ABCÖУ¬a£¬b£¬c·Ö±ðΪÄÚ½ÇA£¬B£¬CËù¶ÔµÄ±ß£¬Èôa=$\sqrt{3}$£¬A=$\frac{¦Ð}{3}$£¬Ôòb+cµÄ×î´óֵΪ£¨¡¡¡¡£©
A£®4B£®3$\sqrt{3}$C£®2$\sqrt{3}$D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÏúÊۼס¢ÒÒÁ½ÖÖÉÌÆ·ËùµÃÀûÈó·Ö±ðÊÇP£¨µ¥Î»£ºÍòÔª£©ºÍQ£¨µ¥Î»£ºÍòÔª£©£¬ËüÃÇÓëͶÈë×ʽðt£¨µ¥Î»£ºÍòÔª£©µÄ¹ØÏµÓо­Ñ鹫ʽP=$\frac{1}{5}$t£¬Q=$\frac{3}{5}\sqrt{t}$£®½ñ½«3ÍòÔª×ʽðͶÈë¾­Óª¼×¡¢ÒÒÁ½ÖÖÉÌÆ·£¬ÆäÖжԼ×ÖÖÉÌÆ·Í¶×Êx£¨µ¥Î»£ºÍòÔª£©£¬
£¨1£©ÊÔ½¨Á¢×ÜÀûÈóy£¨µ¥Î»£ºÍòÔª£©¹ØÓÚxµÄº¯Êý¹ØÏµÊ½£»
£¨2£©µ±¶Ô¼×ÖÖÉÌÆ·Í¶×Êx£¨µ¥Î»£ºÍòÔª£©Îª¶àÉÙʱ£¿×ÜÀûÈóy£¨µ¥Î»£ºÍòÔª£©Öµ×î´ó£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªº¯Êýf£¨x£©=$\frac{{x}^{2}+ax+4}{x}$£¨a£¾0£©£®
£¨1£©Ö¤Ã÷º¯Êýf£¨x£©ÔÚ£¨0£¬2]ÉÏÊǼõº¯Êý£¬£¨2£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£»
£¨2£©Èô·½³Ìf£¨x£©=0ÓÐÇÒÖ»ÓÐÒ»¸öʵÊý¸ù£¬ÅжϺ¯Êýg£¨x£©=f£¨x£©-4µÄÆæÅ¼ÐÔ£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏÂ̽Çó·½³Ìf£¨x£©=m£¨m¡Ý8£©µÄ¸ùµÄ¸öÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®Éèf£¨x£©µÄͼÏóÔÚÇø¼ä[a£¬b]Éϲ»¼ä¶Ï£¬ÇÒf£¨a£©f£¨b£©£¼0£¬Óöþ·Ö·¨ÇóÏàÓ¦·½³ÌµÄ¸ùʱ£¬Èôf£¨a£©£¼0£¬f£¨b£©£¾0£¬f£¨$\frac{a+b}{2}$£©£¾0£¬ÔòÈ¡ÓиùµÄÇø¼äΪ$£¨a£¬\frac{a+b}{2}£©$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÒÑÖªº¯Êýf£¨x£©=2sin£¨¦Øx+¦Õ£©+1£¨¦Ø£¾0£¬|¦Õ|¡Ü$\frac{¦Ð}{2}}$£©£¬ÆäͼÏóÓëÖ±Ïßy=-1ÏàÁÚÁ½¸ö½»µãµÄ¾àÀëΪ¦Ð£¬Èôf£¨x£©£¾1¶Ô?x¡Ê£¨-$\frac{¦Ð}{12}$£¬$\frac{¦Ð}{3}}$£©ºã³ÉÁ¢£¬Ôò¦ÕµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®$[{\frac{¦Ð}{12}£¬\frac{¦Ð}{6}}]$B£®$[{\frac{¦Ð}{6}£¬\frac{¦Ð}{2}}]$C£®$[{\frac{¦Ð}{12}£¬\frac{¦Ð}{3}}]$D£®$[{\frac{¦Ð}{6}£¬\frac{¦Ð}{3}}]$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªa¡ÊR£¬º¯Êýf£¨x£©=2x3-3£¨a+1£©x2+6ax£®
£¨I£©Èôº¯Êýf£¨x£©ÔÚx=3´¦È¡µÃ¼«Öµ£¬ÇóÇúÏßy=f£¨x£©Ôڵ㣨0£¬f£¨0£©£©´¦µÄÇÐÏß·½³Ì£»
£¨¢ò£©Èôa£¾$\frac{1}{2}$£¬º¯Êýy=f£¨x£©ÔÚ[0£¬2a]ÉϵÄ×îСֵÊÇ-a2£¬ÇóaµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªº¯Êýf£¨x£©=2$\sqrt{3}$sinxsin£¨${\frac{¦Ð}{2}$-x£©+2cos2x+aµÄ×î´óֵΪ3£®
£¨I£©Çóf£¨x£©µÄµ¥µ÷ÔöÇø¼äºÍaµÄÖµ£»
£¨II£©°Ñº¯Êýy=f£¨x£©µÄͼÏóÏòÓÒÆ½ÒÆ$\frac{¦Ð}{4}$¸öµ¥Î»µÃµ½º¯Êýy=g£¨x£©µÄͼÏó£¬Çóg£¨x£©ÔÚ£¨0£¬$\frac{¦Ð}{2}}$£©ÉϵÄÖµÓò£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÔÚÊýÁÐ{an}ÖУ¬a1=1£¬an+1=1-$\frac{1}{4{a}_{n}}$£¬bn=$\frac{1}{2{a}_{n}-{1}_{\;}}$£¬ÆäÖÐn¡ÊN*£®
£¨1£©ÇóÖ¤£ºÊýÁÐ{bn}ΪµÈ²îÊýÁУ»
£¨2£©Éècn=bn+1•£¨$\frac{1}{3}$£©${\;}^{{b}_{n}}$£¬ÊýÁÐ{cn}µÄǰnÏîºÍΪTn£¬ÇóTn£»
£¨3£©Ö¤Ã÷£º1+$\frac{1}{\sqrt{{b}_{2}}}$+$\frac{1}{\sqrt{{b}_{3}}}$+¡­+$\frac{1}{\sqrt{{b}_{n}}}$¡Ü2$\sqrt{n}$-1£¨n¡ÊN*£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸