精英家教网 > 高中数学 > 题目详情
16.已知等差数列{an}首项是1公差不为0,Sn为的前n和,且S22=S1•S4
(1)求数列{an}的通项公式;
(2)设数列bn=$\frac{1}{{{a_n}{a_{n+1}}}}$,求数列{bn}的前n项和Tn

分析 (1)由等差数列的性质可得:${a_1}({4{a_1}+6d})={({2{a_1}+d})^2}$,即$2{a_1}d={d^2}$,由a1=1,d≠0,求得d,根据等差数列通项公式,即可求得数列{an}的通项公式;
(2)由(1)可得${b_n}=\frac{1}{{({2n-1})({2n+1})}}$=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),利用“裂项法”即可求得数列{bn}的前n项和Tn

解答 解:(1)由已知,得 ${S_2}^2={S_1}•{S_4}$,即${a_1}({4{a_1}+6d})={({2{a_1}+d})^2}$,
∴$2{a_1}d={d^2}$,
又由a1=1,d≠0,
∴d=2,
an=1+2(n-1)=2n-1,
数列{an}的通项公式an=2n-1;
(2)由(1)可得${b_n}=\frac{1}{{({2n-1})({2n+1})}}$=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),
Tn=b1+b2+b3+…+bn
=$\frac{1}{2}[{({1-\frac{1}{3}})+({\frac{1}{3}-\frac{1}{5}})({\frac{1}{5}-\frac{1}{7}})+…+({\frac{1}{2n-1}-\frac{1}{2n+1}})}]=\frac{n}{2n+1}$,
数列{bn}的前n项和Tn=$\frac{n}{2n+1}$.

点评 本题考查等差数列的通项公式,考查“裂项法”求数列的前n项和,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.若锐角△ABC的面积为10$\sqrt{3}$,且AB=8,AC=5,则BC等于7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知三阶行列式$|{\begin{array}{l}8&1&6\\ 3&5&7\\ 4&9&2\end{array}}|$,则元素3的代数余子式的值为52.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,A、B、C的对边分别是a,b,c,已知sinA=$\frac{3}{5}$,a=3$\sqrt{5}$,b=5,求c.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知A={x|x<2},B={x|x<m},若B是A的子集,则实数m的取值范围为m≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设函数f(x)=$\left\{\begin{array}{l}{3x-\frac{1}{2},x<1}\\{{2}^{x},x≥1}\end{array}\right.$,则f(f($\frac{5}{6}$))=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设函数f(x)是定义在R上的偶函数,且对任意的x∈R,都有f(x+1)=f(x-1),已知当x∈[0,1]时,f(x)=2x-1,有以下结论:
①2是函数f(x)的一个周期;        
②函数f(x)在(1,2)上单调递减,在(2,3)上单调递增;
③函数f(x)的最大值为1,最小值为0;   
④当x∈(3,4)时,f(x)=23-x
其中,正确结论的序号是①②④.(请写出所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数y=f(x)在(0,2)上是增函数,且y=f(x+2)是偶函数,则f(1),f($\frac{5}{2}$),f($\frac{7}{2}$)的大小关系是(  )
A.f($\frac{7}{2}$)<f(1)<f($\frac{5}{2}$)B.f(1)<f($\frac{5}{2}$)<f($\frac{7}{2}$)C.f($\frac{7}{2}$)<f($\frac{5}{2}$)<f(1)D.f($\frac{5}{2}$)<f(1)<f($\frac{7}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=a-$\frac{2}{{2}^{x}+1}$为奇函数.
(1)求a的值;
(2)试判断函数f(x)在(-∞,+∞)上的单调性,并证明你的结论;
(3)若对任意的t∈R,不等式f[t2-(m-2)t]+f(t2-m+1)>0恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案