精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=a-$\frac{2}{{2}^{x}+1}$为奇函数.
(1)求a的值;
(2)试判断函数f(x)在(-∞,+∞)上的单调性,并证明你的结论;
(3)若对任意的t∈R,不等式f[t2-(m-2)t]+f(t2-m+1)>0恒成立,求实数m的取值范围.

分析 (1)直接利用奇函数的定义f(-x)=f(x),可求出a值;
(2)直接利用函数的单调性定义证明即可;
(3)利用奇函数与单调性直接转化为t2-(m-2)t>m-1-t2 对t∈R恒成立,从而求出m的取值范围.

解答 解:(1)由于函数f(x)为奇函数,所以f(-x)=-f(x);
∴a-$\frac{2}{{2}^{x}+1}$=-a+$\frac{2}{{2}^{-x}+1}$;
∴2a=$\frac{2•{2}^{x}}{{2}^{x}+1}+\frac{2}{{2}^{x}+1}$;
∴a=1.
(2)任意x1,x2∈R,且x1<x2
f(x1)-f(x2)=1-$\frac{2}{{2}^{{x}_{1}}+1}$-1+$\frac{2}{{2}^{{x}_{2}}+1}$;
=$\frac{2({2}^{{x}_{1}}-{2}^{{x}_{2}})}{({2}^{{x}_{1}}+1)({2}^{{x}_{2}}+1)}$<0;
∵x1<x2∴0<${2}^{{x}_{1}}$<${2}^{{x}_{2}}$
∴${2}^{{x}_{1}}-{2}^{{x}_{2}}$>0,
所以,f(x1)<f(x2);
则f(x)为R上的单调递增函数.
(3)因为f(x)=1-$\frac{2}{{2}^{x}+1}$为奇函数,且在R上为增函数;
所以由f(t2-(m-2)t)+f(t2-m+1)>0恒成立,
得到:t2-(m-2)t>m-1-t2 对t∈R恒成立;
化简后:2t2-(m-2)t-m+1>0;
所以△=(m-2)2+8(m-1)<0;
∴-2-2$\sqrt{2}$<m<-2+2$\sqrt{2}$;
故m的取值范围为:(-2-2$\sqrt{2}$,-2+2$\sqrt{2}$).

点评 本题主要考查了函数的奇偶性,函数单调性定义证明,以及利用函数的性质求解不等式恒成立问题,属中等题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知等差数列{an}首项是1公差不为0,Sn为的前n和,且S22=S1•S4
(1)求数列{an}的通项公式;
(2)设数列bn=$\frac{1}{{{a_n}{a_{n+1}}}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知圆C:(x-a)2+(y-a)2=2a2(a>0)及其外一点A(0,2).若圆C上存在点T满足∠CAT=$\frac{π}{4}$,则实数a的取值范围是(  )
A.(-∞,1)B.$[\sqrt{3}-1,1)$C.$[\sqrt{3}-1,1]$D.$[\sqrt{3}-1,+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若f(x)=x2-4x+4+m的定义域值域都是[2,n],则mn=8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若m∈(0,1),a=3m,b=log3m,c=m3则用“>”将a,b,c按从大到小可排列为a>c>b.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.执行如图所示的伪代码,输出i的值为11.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.平行四边形ABCD中,AB=4,AD=2,$\overrightarrow{AB}$•$\overrightarrow{AD}=4$,点P在边CD上,则$\overrightarrow{PA}$•$\overrightarrow{PB}$的最大值是8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.计算($\frac{27}{8}$)${\;}^{\frac{2}{3}}}$=$\frac{9}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知等差数列{an}满足:a5=9,a1+a7=14.
(1)求数列{an}的通项公式;
(2)若bn=an+3n,求数列{bn}的前n项和Sn

查看答案和解析>>

同步练习册答案