精英家教网 > 高中数学 > 题目详情
15.计算($\frac{27}{8}$)${\;}^{\frac{2}{3}}}$=$\frac{9}{4}$.

分析 根据指数幂的运算性质计算即可.

解答 解:($\frac{27}{8}$)${\;}^{\frac{2}{3}}}$=$(\frac{3}{2})^{3×\frac{2}{3}}$=$\frac{9}{4}$,
故答案为:$\frac{9}{4}$

点评 本题考查了指数幂的运算性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知函数y=f(x)在(0,2)上是增函数,且y=f(x+2)是偶函数,则f(1),f($\frac{5}{2}$),f($\frac{7}{2}$)的大小关系是(  )
A.f($\frac{7}{2}$)<f(1)<f($\frac{5}{2}$)B.f(1)<f($\frac{5}{2}$)<f($\frac{7}{2}$)C.f($\frac{7}{2}$)<f($\frac{5}{2}$)<f(1)D.f($\frac{5}{2}$)<f(1)<f($\frac{7}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=a-$\frac{2}{{2}^{x}+1}$为奇函数.
(1)求a的值;
(2)试判断函数f(x)在(-∞,+∞)上的单调性,并证明你的结论;
(3)若对任意的t∈R,不等式f[t2-(m-2)t]+f(t2-m+1)>0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图为一平面图形的直观图,则该平面图形的面积为6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在正方体ABCD-A1B1C1D1中,棱长为a,E是棱DD1的中点
(1)求三棱锥E-A1B1B的体积;
(2)在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知全集U=R,集合A={x|-1≤x≤3},B={x|x2<4},
(1)求A∪B;         
(2)求集合∁UA.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)=$\sqrt{-2+lo{g}_{2}x}$的定义域是(  )
A.(0,4)B.(4,+∞)C.[4,+∞)D.(-4,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=xm-$\frac{2}{x}$,且f(3)=$\frac{7}{3}$.
(Ⅰ)求函数f(x)的解析式,并判断函数f(x)的奇偶性.
(Ⅱ)证明函数f(x)在(0,+∞)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图,在平行六面体ABCD-A1B1C1D1中,底面是边长为1的正方形,若∠A1AB=∠A1AD=60°,且A1C=$\sqrt{5}$,则A1A=3.

查看答案和解析>>

同步练习册答案