【题目】已知函数
.
(1)若
是定义域上的增函数,求
的取值范围;
(2)设
,
分别为
的极大值和极小值,若
,求
的取值范围.
科目:高中数学 来源: 题型:
【题目】如图:已知某公园的四处景观分别位于等腰梯形
的四个顶点处,其中
,
两地的距离为
千米,
,
两地的距离为
千米,
.现拟规划在
(不包括端点)路段上增加一个景观
,并建造观光路直接通往
处,造价为每千米
万元,又重新装饰
路段,造价为每千米
万元.
![]()
(1)若拟修建观光路
路段长为
千米,求
路段的造价;
(2)设
,当
为何值时,
,
段的总造价最低.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某数学小组到进行社会实践调查,了解鑫鑫桶装水经营部在为如何定价发愁。进一步调研了解到如下信息:该经营部每天的房租、人员工资等固定成本为200元,每桶水的进价是5元,销售单价与日均销售量的关系如下表:
销售单价/元 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
日均销售量/桶 | 480 | 440 | 400 | 360 | 320 | 280 | 240 |
根据以上信息,你认为该经营部定价为多少才能获得最大利润?( )
A.每桶8.5元B.每桶9.5元C.每桶10.5元D.每桶11.5元
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某射击小组有甲、乙、丙三名射手,已知甲击中目标的概率是
,甲、丙二人都没有击中目标的概率是
,乙、丙二人都击中目标的概率是
.甲乙丙是否击中目标相互独立.
(1)求乙、丙二人各自击中目标的概率;
(2)设乙、丙二人中击中目标的人数为X,求X的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数
.
(1)若
是
的两个不同零点,是否存在实数
,使
成立?若存在,求
的值;若不存在,请说明理由.
(2)设
,函数
,存在
个零点.
(i)求
的取值范围;
(ii)设
分别是这
个零点中的最小值与最大值,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的左,右焦点分别为
,
,点
为椭圆
上任意一点,点
关于原点
的对称点为点
,有
,且当
的面积最大时为等边三角形.
(1)求椭圆
的标准方程;
(2)与圆
相切的直线
:
交椭圆
于
,
两点,若椭圆上存在点
满足
,求四边形
面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《中华人民共和国道路交通安全法》第47条的相关规定:机动车行经人行横道时,应当减速慢行;遇行人正在通过人行横道,应当停车让行,俗称“礼让斑马线”,《中华人民共和国道路交通安全法》第90条规定:对不礼让行人的驾驶员处以扣3分,罚款50元的处罚.
(1)交警从这5个月内通过该路口的驾驶员中随机抽查了50人,调查驾驶员不“礼让斑马线”行为与驾龄的关系,得到如下列联表:能否据此判断有97.5%的把握认为“礼让斑马线”行为与驾龄有关?
不礼让斑马线 | 礼让斑马线 | 合计 | |
驾龄不超过1年 | 22 | 8 | 30 |
驾龄1年以上 | 8 | 12 | 20 |
合计 | 30 | 20 | 50 |
(2)下图是某市一主干路口监控设备所抓拍的5个月内驾驶员不“礼让斑马线”行为的折线图:
![]()
请结合图形和所给数据求违章驾驶员人数y与月份x之间的回归直线方程
,并预测该路口7月份的不“礼让斑马线”违章驾驶员人数.
附注:参考数据:
,
.
参考公式:
,
,
(其中
)
| 0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在极坐标系下,方程
的图形为如图所示的“幸运四叶草”,又称为玫瑰线.
![]()
(1)当玫瑰线的
时,求以极点为圆心的单位圆与玫瑰线的交点的极坐标;
(2)求曲线
上的点M与玫瑰线上的点N距离的最小值及取得最小值时的点M、N的极坐标(不必写详细解题过程).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com