精英家教网 > 高中数学 > 题目详情
15.甲厂根据以往的生产销售经验得到下面有关生产销售的关系:厂里的固定成本为2.8万元,每生产1百台的生产成本为1万元,每生产产品x(百台),其总成本为G(x)(万元)(总成本=固定成本+生产成本).如果销售收入R(x)=$\left\{\begin{array}{l}{-0.4{x}^{2}+4.2x,0≤x≤5}\\{11,x>5}\end{array}\right.$,且该产品产销平衡(即生产的产品都能卖掉),请完成下列问题:
(1)写出利润函数y=f(x)的解析式(利润=销售收入-总成本);
(2)甲厂生产多少台新产品时,可使盈利最多?

分析 (1)由题意得G(x)=2.8+x.由R(x)=$\left\{\begin{array}{l}{-0.4{x}^{2}+4.2x,0≤x≤5}\\{11,x>5}\end{array}\right.$,f(x)=R(x)-G(x),能写出利润函数y=f(x)的解析式.
(2)当x>5时,由函数f(x)递减,知f(x)<f(5)=3.2(万元).当0≤x≤5时,函数f(x)=-0.4(x-4)2+3.6,当x=4时,f(x)有最大值为3.6(万元).由此能求出工厂生产多少台产品时,可使盈利最多.

解答 解:(1)由题意得G(x)=2.8+x.
∴f(x)=R(x)-G(x)=$\left\{\begin{array}{l}{-0.4{x}^{2}+3.2x-2.8(0≤x≤5)}\\{8.2-x(x>5)}\end{array}\right.$.
(2)当x>5时,∵函数f(x)递减,∴f(x)<=3.2(万元).
当0≤x≤5时,函数f(x)=-0.4(x-4)2+3.6,
当x=4时,f(x)有最大值为3.6(万元).
答:当工厂生产4百台时,可使赢利最大为3.6万元.

点评 本题考查函数知识在生产实际中的具体应用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=a${\;}^{{x}^{2}-2x}$(a>0,且a≠1),x∈[0,$\frac{3}{2}$]的最大值比最小值大2a,则a=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知a,b,c,d∈E,证明下列不等式:
(1)(a2+b2)(c2+d2)≥(ac+bd)2;    
(2)a2+b2+c2≥ab+bc+ca.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若数列{an}满足a1=2,an+1=$\frac{1+{a}_{n}}{1-{a}_{n}}$(n∈N*),则该数列的前2014项的乘积等于(  )
A.3B.-6C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若函数f(x)=xln(x-2)-4的零点恰在两个相邻正整数m,n之间,则m+n=(  )
A.11B.9C.7D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.函数f(x)的定义域为{x|x≠0},且满足对于定义域内任意的x1,x2都有等式f(x1•x2)=f(x1)+f(x2)成立.
(1)求f(1)的值.
(2)判断f(x)的奇偶性并证明.
(3)若f(4)=1,且f(x)在(0,+∞)上是增函数,解关于x的不等式f(3x+1)+f(-6)≤3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知集合A={(x,y)|y=0.2|x|-1},集合B={(x,y)|y=m},若A∩B≠∅,则实数m的取值范围是(-1,0].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.奇函数f(x)在区间[3,5]上是减函数,且最小值为3,则f(x)在区间[-5,-3]上是(  )
A.增函数,且最大值是-3B.增函数,且最小值是-3
C.减函数,且最小值是-3D.减函数,且最大值是-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若“?x∈[0,$\frac{π}{3}$],tanx≤m”是真命题,则实数m的最小值为(  )
A.$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{3}}{2}$C.1D.$\sqrt{3}$

查看答案和解析>>

同步练习册答案