【题目】如图
,
是以
为直径的圆上一段圆弧,
是以
为直径的圆上一段圆弧,
是以
为直径的圆上一段圆弧,三段弧构成曲线
.则下面说法正确的是( )
![]()
A.曲线
与
轴围成的面积等于![]()
B.
与
的公切线方程为:![]()
C.
所在圆与
所在圆的交点弦方程为:![]()
D.用直线
截
所在的圆,所得的弦长为![]()
【答案】BC
【解析】
由题知曲线
与x轴围成的图形为一个半圆、一个矩形和两个四分之一圆,求面积和,可判断A;设
与
的公切线方程,由直线与圆相切的条件,列方程组,可求得直线方程,即可判断B;由两圆方程联立相减,则可求出
所在圆与
所在圆的交点弦方程,可判断C;由弦长公式求出弦长,可判断D.
各段圆弧所在圆方程分别为:
:
,
:
,
:![]()
曲线
与x轴围成的图形为一个半圆、一个矩形和两个
圆,
面积为
,故选项A错误;
设
与
的公切线方程为:
,
则
,解得
,
所以
与
的公切线方程为:
,
即
,故选项B正确;
由
及
两式相减得:
即为交点弦所在直线方程,故选项C正确;
所在圆的方程为
,圆心为
,
圆心到直线
的距离为
,
则弦长为
,故选项D错误.
故选:BC.
![]()
科目:高中数学 来源: 题型:
【题目】《中华人民共和国道路交通安全法》第47条的相关规定:机动车行经人行横道时,应当减速慢行;遇行人正在通过人行横道,应当停车让行,俗称“礼让斑马线”,《中华人民共和国道路交通安全法》 第90条规定:对不礼让行人的驾驶员处以扣3分,罚款50元的处罚.下表是某市一主干路口监控设备所抓拍的5个月内驾驶员不“礼 让斑马线”行为统计数据:
![]()
(1)请利用所给数据求违章人数
与月份
之间的回归直线方程
;
(2)预测该路口 9月份的不“礼让斑马线”违章驾驶员人数;
(3)若从表中3、4月份分别抽取4人和2人,然后再从中任选2 人进行交规调查,求抽到的两人恰好来自同一月份的概率.
参考公式:
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】动点
到定点
的距离比它到直线
的距离小1,设动点
的轨迹为曲线
,过点
的直线交曲线
于
、
两个不同的点,过点
、
分别作曲线
的切线,且二者相交于点
.
(Ⅰ)求曲线
的方程;
(Ⅱ)求证:
;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给定一个
项的实数列
,
,
,
,任意选取一个实数
,变换
将数列
,
,
,
变换为数列
,
,
,
,再将得到的数列继续实施这样的变换,这样的变换可以连续进行多次,并且每次所选择的实数
可以不相同,第
次变换记为
,其中
为第
次变换时所选择的实数.如果通过
次变换后,数列中的各项均为
,则称
,
,
,
为“
次归零变换”.
(
)对数列
,
,
,
,给出一个“
次归零变换”,其中
.
(
)对数列
,
,
,
,
,给出一个“
次归零变换”,其中
.
(
)证明:对任意
项的实数列,都存在“
次归零变换”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
中,
,其前
项和
满足:
.
(1)求数列
的通项公式
;
(2)设
,求证:
;
(3)设
(
为非零整数,
),是否存在确定的
值,使得对任意
,有
恒成立.若存在求出
的值,若不存在说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
为坐标原点,
,
,
,若
.
⑴ 求函数
的最小正周期和单调递增区间;
⑵ 将函数
的图象上各点的横坐标伸长为原来的
倍(纵坐标不变),再将得到的图象向左平移
个单位,得到函数
的图象,求函数
在
上的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆
,B为椭圆上任一点,F为椭圆左焦点,已知
的最小值与最大值之和为4,且离心率
,抛物线
的通径为4.
求椭圆和抛物线的方程;
设坐标原点为O,A为直线
与已知抛物线在第一象限内的交点,且有
.
试用k表示A,B两点坐标;
是否存在过A,B两点的直线l,使得线段AB的中点在y轴上?若存在,求出直线l的方程,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com