精英家教网 > 高中数学 > 题目详情
设函数f(x)=x3-3ax2+3bx的图象与直线12x+y-1=0相切于点(1,-11).
(1)求a,b的值;
(2)求函数f(x)的极值.
考点:利用导数研究函数的单调性,利用导数研究曲线上某点切线方程
专题:导数的综合应用
分析:(1)函数在切点处的导数值为切线斜率,切点在切线上,列方程解.
(2)导函数大于0对应区间是单调递增区间;导函数小于0对应区间是单调递减区间.
解答: 解:(1)求导得f′(x)=3x2-6ax+3b.
由于f(x)的图象与直线12x+y-1=0相切于点(1,-11),
所以f(1)=-11,f′(1)=-12,即:
1-3a+3b=-11,3-6a+3b=-12
解得:a=1,b=-3.
(2)由a=1,b=-3得:f(x)=x3-3x2-9x,
f′(x)=3(x2-2x-3)=3(x+1)(x-3)
令f′(x)>0,解得x<-1或x>3;
又令f′(x)<0,解得-1<x<3.
故当x∈(-∞,-1)时,f(x)是增函数,
当x∈(3,+∞)时,f(x)也是增函数,
但当x∈(-1,3)时,f(x)是减函数,
∴f(x)极大值=f(-1)=5,
f(x)极小值=f(3)=-27.
点评:考查导数的几何意义及利用导数求函数的单调区间.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

作出函数f(x)=-3x+4的图象,并证明它是R上的减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知三角形的顶点为A(2,4),B(0,-2),C(-2,3).求:
(Ⅰ)直线AB的方程;
(Ⅱ)求平行于AB的中位线所在的直线方程;
(Ⅲ)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:-1≤x≤3,q:x<m-1或x>m+1,若p是q的充分条件,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|m<x<2m-1,m∈R},B={x|x∈(-∞,2)∪[4,+∞)},若A∩B=A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3lnx-
1
2
x2+2x.
(1)确定函数f(x)的单调区间,并指出其单调性;
(2)求函数y=f(x)的图象在点x=1处的切线与两坐标轴所围成的三角形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=2,an+1=2an+2n+1
(1)若bn=
an
2n
,求证:数列{bn}为等差数列;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C中心是坐标原点O,焦点在x轴上,离心率e=
3
2
,P(1,
3
2
)为椭圆上的一点.
(1)求椭圆C的标准方程;
(2)如图,记椭圆C的上顶点为A,问是否存在这样的以A为直角顶点的内接与椭圆的等腰直角△ABC,若存在,共有几个?若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

动点P在边长为1的正方形ABCD内运动,则动点P到顶点A的距离|PA|≤1的概率为
 

查看答案和解析>>

同步练习册答案