精英家教网 > 高中数学 > 题目详情
4.若集合A={x∈Z|-2<x<2},B={x|y=log2x2},则A∩B=(  )
A.{-1,1}B.{-1,0,1}C.{1}D.{0,1}

分析 化简集合A、B,根据交集的定义写出A∩B.

解答 解:集合A={x∈Z|-2<x<2}={-1,0,1},
B={x|y=log2x2}={x|x2>0}={x|x<0或x>0},
∴A∩B={-1,1}.
故选:A.

点评 本题考查了集合的化简与运算问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.《九章算术》是我国古代数学著作,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积及堆放的米各为多少?”已知一斛米的体积约为1.62立方尺,由此估算出堆放的米约有(  )
A.21斛B.34斛C.55斛D.63斛

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,角A、B、C所对的边分别为a、b、c,设向量$\overrightarrow{m}$=(a,c),$\overrightarrow{n}$=(cosC,cosA).
(1)若$\overrightarrow{m}$∥$\overrightarrow{n}$,a=$\sqrt{3}$c,求角A;
(2)若$\overrightarrow{m}$•$\overrightarrow{n}$=3bsinB,cosA=$\frac{3}{5}$,求cosC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.向量$\overrightarrow a,\overrightarrow b$满足|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow{b}$|=2,($\overrightarrow{a}$+$\overrightarrow{b}$)⊥(2$\overrightarrow{a}$-$\overrightarrow{b}$),则向量$\overrightarrow a$与$\overrightarrow b$的夹角为(  )
A.45°B.60°C.90°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合A={x|2x-5>0},B={x|x2-4x+3≤0},则A∩B=(  )
A.(1,$\frac{5}{2}$)B.[1,$\frac{5}{2}$)C.($\frac{5}{2}$,3)D.($\frac{5}{2}$,3]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知双曲线与$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的一条渐近线被圆(x-c)2+y2=4a2截得弦长为2b(双曲线的焦距2c),则该双曲线的离心率为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若点A(4,3),B(2,-1)在直线x+2y-a=0的两侧,则a的取值范围是(  )
A.(0,10)B.(-1,2)C.(0,1)D.(1,10)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),短轴长2,两焦点分别为F1,F2,过F1的直线交椭圆C于M,N两点,且△F2MN的周长为8.
(1)求椭圆C的方程;
(2)直线l与椭圆C相交于A,B点,点D为椭圆C上一点,四边形AOBD为矩形,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知关于x的不等式(m-1)x2+(m-1)x+2>0
(1)若m=0,求该不等式的解集
(2)若该不等式的解集是R,求m的取值范围.

查看答案和解析>>

同步练习册答案