精英家教网 > 高中数学 > 题目详情

【题目】微信红包是一款可以实现收发红包、查收记录和提现的手机应用.某网络运营商对甲、乙两个品牌各5种型号的手机在相同环境下抢到的红包个数进行统计,得到如下数据:

手机品牌 型号

I

II

III

IV

V

甲品牌(个)

4

3

8

6

12

乙品牌(乙)

5

7

9

4

3

手机品牌 红包个数

非优

合计

甲品牌(个)

乙品牌(个)

合计

(1)如果抢到红包个数超过5个的手机型号为“优”,否则为“非优”,请完成上述2×2列联表,据此判断是否有85%的把握认为抢到的红包个数与手机品牌有关?

(2)如果不考虑其他因素,要从甲品牌的5种型号中选出3种型号的手机进行大规模宣传销售.

①求在型号I被选中的条件下,型号II也被选中的概率;

②以表示选中的手机型号中抢到的红包超过5个的型号种数,求随机变量的分布列及数学期望.

下面临界值表供参考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

参考公式: ,其中.

【答案】(1)见解析;(2)①;②分布列见解析,期望为

【解析】试题分析:

(1)利用题意写出列联表,求得,则没有85%的理由认为抢到红包个数与手机品牌有关.

(2)利用超几何分布的结论写出分布列,结合分布列可求得期望为

试题解析:⑴根据题意列出列联表如下:

红包个数

手机品牌

非优

合计

甲品牌(个)

3

2

5

乙品牌(个)

2

3

5

合计

5

5

10

所以没有85%的理由认为抢到红包个数与手机品牌有关

⑵① 型号I被选中为事件 型号II被选中为事件

, ,

;

;

的分布列为:

1

2

3

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若定义在区间D上的函数y=f(x)满足:对x∈D,M∈R,使得|f(x)|≤M恒成立,则称函数y=f(x)在区间D上有界.则下列函数中有界的是:
①y=sinx;② ;③y=tanx;④
⑤y=x3+ax2+bx+1(﹣4≤x≤4),其中a,b∈R.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆为参数), 上的动点,且满足为坐标原点),以原点为极点, 轴的正半轴为极轴建立坐标系,点的极坐标为.

(1)求线段的中点的轨迹的普通方程;

(2)利用椭圆的极坐标方程证明为定值,并求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四组函数中,表示相等函数的一组是(
A.f(x)=|x|,
B.
C. ,g(x)=x+1
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,四个顶点构成的菱形的面积是4,圆过椭圆的上顶点作圆的两条切线分别与椭圆相交于两点(不同于点),直线的斜率分别为.

(1)求椭圆的方程;

(2)当变化时,①求的值;②试问直线是否过某个定点?若是,求出该定点;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校的平面示意图为如下图五边形区域,其中三角形区域为生活区,四边形区域为教学区, 为学校的主要道路(不考虑宽度). .

(1)求道路的长度;(2)求生活区面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是(
A.“f(0)=0”是“函数f(x)是奇函数”的充要条件
B.若p:?x0∈R,x02﹣x0﹣1>0,则¬p:?x∈R,x2﹣x﹣1<0
C.若p∧q为假命题,则p,q均为假命题
D.“若α= ,则sinα= ”的否命题是“若α≠ ,则sinα≠

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义域与值域都是[﹣2,2]的两个函数f(x)、g(x)的图象如图所示(实线部分),则下列四个命题中,
①方程f[g(x)]=0有6个不同的实数根;
②方程g[f(x)]=0有4个不同的实数根;
③方程f[f(x)]=0有5个不同的实数根;
④方程g[g(x)]=0有3个不同的实数根;
正确的命题是(

A.②③④
B.①④
C.②③
D.①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知为椭圆上的点,且,过点的动直线与圆相交于两点,过点作直线的垂线与椭圆相交于点

(1)求椭圆的离心率;

(2)若,求

查看答案和解析>>

同步练习册答案