【题目】微信红包是一款可以实现收发红包、查收记录和提现的手机应用.某网络运营商对甲、乙两个品牌各5种型号的手机在相同环境下抢到的红包个数进行统计,得到如下数据:
手机品牌 型号 | I | II | III | IV | V |
甲品牌(个) | 4 | 3 | 8 | 6 | 12 |
乙品牌(乙) | 5 | 7 | 9 | 4 | 3 |
手机品牌 红包个数 | 优 | 非优 | 合计 |
甲品牌(个) | |||
乙品牌(个) | |||
合计 |
(1)如果抢到红包个数超过5个的手机型号为“优”,否则为“非优”,请完成上述2×2列联表,据此判断是否有85%的把握认为抢到的红包个数与手机品牌有关?
(2)如果不考虑其他因素,要从甲品牌的5种型号中选出3种型号的手机进行大规模宣传销售.
①求在型号I被选中的条件下,型号II也被选中的概率;
②以表示选中的手机型号中抢到的红包超过5个的型号种数,求随机变量的分布列及数学期望.
下面临界值表供参考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式: ,其中.
科目:高中数学 来源: 题型:
【题目】若定义在区间D上的函数y=f(x)满足:对x∈D,M∈R,使得|f(x)|≤M恒成立,则称函数y=f(x)在区间D上有界.则下列函数中有界的是: .
①y=sinx;② ;③y=tanx;④ ;
⑤y=x3+ax2+bx+1(﹣4≤x≤4),其中a,b∈R.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆为参数), 是上的动点,且满足为坐标原点),以原点为极点, 轴的正半轴为极轴建立坐标系,点的极坐标为.
(1)求线段的中点的轨迹的普通方程;
(2)利用椭圆的极坐标方程证明为定值,并求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,四个顶点构成的菱形的面积是4,圆过椭圆的上顶点作圆的两条切线分别与椭圆相交于两点(不同于点),直线的斜率分别为.
(1)求椭圆的方程;
(2)当变化时,①求的值;②试问直线是否过某个定点?若是,求出该定点;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校的平面示意图为如下图五边形区域,其中三角形区域为生活区,四边形区域为教学区, 为学校的主要道路(不考虑宽度). .
(1)求道路的长度;(2)求生活区面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法正确的是( )
A.“f(0)=0”是“函数f(x)是奇函数”的充要条件
B.若p:?x0∈R,x02﹣x0﹣1>0,则¬p:?x∈R,x2﹣x﹣1<0
C.若p∧q为假命题,则p,q均为假命题
D.“若α= ,则sinα= ”的否命题是“若α≠ ,则sinα≠ ”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义域与值域都是[﹣2,2]的两个函数f(x)、g(x)的图象如图所示(实线部分),则下列四个命题中,
①方程f[g(x)]=0有6个不同的实数根;
②方程g[f(x)]=0有4个不同的实数根;
③方程f[f(x)]=0有5个不同的实数根;
④方程g[g(x)]=0有3个不同的实数根;
正确的命题是( )
A.②③④
B.①④
C.②③
D.①②③④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com