精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1x+1

(1)证明:f(x)在区间(-1,+∞)上单调递减;
(2)若f(x)≤a在区间[0,+∞)上恒成立,求a的取值范围.
分析:(1)设-1<x1<x2,根据减函数的定义,只需通过作差说明f(x1)>f(x2)即可;
(2)f(x)≤a在区间[0,+∞)上恒成立,等价于x∈[0,+∞)时f(x)max≤a,借助(1)问函数的单调性可求其最大值.
解答:(1)证明:设-1<x1<x2
则f(x1)-f(x2)=
1
x1+1
-
1
x2+1
=
x2-x1
(x1+1)(x2+1)

因为-1<x10,x2+1>0,
所以f(x1)-f(x2)>0,即f(x1)>f(x2),
所以函数f(x)=
1
x+1
在(-1,+∞)上单调递减.
(2)解:f(x)≤a在区间[0,+∞)上恒成立,等价于x∈[0,+∞)时f(x)max≤a,
由(1)知,f(x)在[0,+∞)上单调递减,所以f(x)max=f(0)=1,
所以有a≥1,即a的取值范围为[1,+∞).
点评:本题考查函数的单调性及函数恒成立问题,考查学生分析问题解决问题的能力,单调性问题常用到定义,恒成立问题常转化为函数最值问题解决.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
|x|
,g(x)=1+
x+|x|
2
,若f(x)>g(x),则实数x的取值范围是(  )
A、(-∞,-1)∪(0,1)
B、(-∞,-1)∪(0,
-1+
5
2
)
C、(-1,0)∪(
-1+
5
2
,+∞)
D、(-1,0)∪(0,
-1+
5
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1,x∈Q
0,x∉Q
,则f[f(π)]=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1-x
ax
+lnx(a>0)

(1)若函数f(x)在[1,+∞)上为增函数,求实数a的取值范围;
(2)当a=1时,求f(x)在[
1
2
,2
]上的最大值和最小值;
(3)当a=1时,求证对任意大于1的正整数n,lnn>
1
2
+
1
3
+
1
4
+
+
1
n
恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1+cos2x-2sin2(x-
π
6
),其中x∈R,则下列结论中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1+logax(a>0,a≠1),满足f(9)=3,则f-1(log92)的值是(  )

查看答案和解析>>

同步练习册答案