精英家教网 > 高中数学 > 题目详情
18.函数y=$\sqrt{-x}$(x≤0)的反函数是y=-x2(x≥0).

分析 欲求原函数y=$\sqrt{-x}$(x≤0)的反函数,即从原函数式中反解出x,后再进行x,y互换,即得反函数的解析式.

解答 解:∵y=$\sqrt{-x}$(x≤0),
∴-x=y2(y≥0),
∴x=-y2(y≥0),
∴x,y互换,得y=-x2(x≥0).
故答案为:y=-x2(x≥0).

点评 本题考查反函数的求法,属于基础题目,要会求一些简单函数的反函数,掌握互为反函数的函数图象间的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知等比数列{an}中,a1=2000,q=-$\frac{3}{4}$,求数列{an}的最大项和最小项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆$\left\{\begin{array}{l}{x=5cosθ}\\{y=4sinθ}\end{array}\right.$(θ为参数,0≤θ<2π)上一点P(4,-$\frac{12}{5}$),求其对应的参数θ的值,并作图指出这个角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知f(1+$\frac{1}{x}$)=$\frac{1}{{x}^{2}}-1$,则f(x)=(  )
A.1+x2(x≠0)B.1+x(x≠-1)C.x2-2x(x≠1)D.x2+2x(x≠-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.函数f(x),x∈R.
(1)若对任意实数a,b都有f(a+b)=f(a)+f(b),求证:f(x)为奇函数;
(2)若对于任意实数x1,x2,都有f(x1+x2)+f(x1-x2)=2f(x1)•f(x2),求证:f(x)为偶函数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.△ABC的三内角为A,B,C,且2C-B=180°,△ABC的周长与最长边的比值为m,那么m的最大值为$\frac{9}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=$\frac{1}{x({x}^{2}-1)}$在(  )所示的区间内有界.
A.(-1,0)B.(0,1)C.(1,2)D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.(1)已知a2n=$\sqrt{2}$+1,求$\frac{{a}^{3n}+{a}^{-3n}}{{a}^{n}+{a}^{-n}}$的值;
(2)若a${\;}^{\frac{1}{2}}$+a${\;}^{-\frac{1}{2}}$=x${\;}^{\frac{1}{2}}$,x>0,求$\frac{x-2+\sqrt{{x}^{2}-4x}}{x-2-\sqrt{{x}^{2}-4x}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数y=f(x)的定义域为[0,3],求函数y=f(x2-1)的定义域.

查看答案和解析>>

同步练习册答案