设数列满足:是整数,且是关于x的方程
的根.
(1)若且n≥2时,求数列{an}的前100项和S100;
(2)若且求数列的通项公式.
(1); (2)。
解析试题分析:(1)由an+1-an是关于x的方程x2+( an+1-2)x-2an+1=0的根,
可得:,
所以对一切的正整数,或,
若a1=4,且n≥2时,4≤an≤8,则数列{an}为:
所以,数列{an}的前100项和;
(2)若a1=-8,根据an(n∈N*)是整数,an<an+1(n∈N*),且或
可知,数列的前6项是:或或或或
因为a6=1,所以数列的前6项只能是且时,所以,数列{an}的通项公式是:
考点:本题主要考查数列的通项公式、求和公式,分段函数的概念。
点评:中档题,等比数列、等差数列相关内容,已是高考必考内容,其难度飘忽不定,有时突出考查求和问题,如“分组求和法”、“裂项相消法”、“错位相减法”等,有时则突出涉及数列的证明题。本题解法中,注意通过研究满足的条件,发现数列特征,确定得到数列的通项公式,带有普遍性。
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
已知点(1,)是函数且)的图象上一点,等比数列的前项和为,数列的首项为,且前项和满足().
(1)求数列和的通项公式;
(2)若数列{前项和为,问>的最小正整数是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(满分13分)已知各项均为正数的数列是数列的前n项和,对任意,有2Sn=2.
(Ⅰ)求常数p的值;
(Ⅱ)求数列的通项公式;
(Ⅲ)记,()若数列从第二项起每一项都比它的前一项大,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
已知数列满足:(其中常数).
(Ⅰ)求数列的通项公式;
(Ⅱ)求证:当时,数列中的任何三项都不可能成等比数列;
(Ⅲ)设为数列的前项和.求证:若任意,
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)a2,a5是方程x 2-12x+27=0的两根,数列{}是公差为正数的等差数列,数列{}的前n项和为,且=1-
(1)求数列{},{}的通项公式;
(2)记=,求数列{}的前n项和Sn.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com