9£®Ä³¸ßÖÐÓмס¢ÒÒÁ½¸öÉúÎïÐËȤС×飬·Ö±ð¶ÀÁ¢¿ªÕ¹¶ÔÒ»ÖÖº£ÑóÉúÎïÀ뿪ºãÎÂÏäµÄ³É»îÇé¿ö½øÐÐÑо¿£¬Ã¿´ÎÊÔÑéÒ»¸öÉúÎ¼××éÄÜʹÉúÎï³É»îµÄ¸ÅÂÊΪ$\frac{3}{4}$£¬ÒÒ×éÄÜʹÉúÎï³É»îµÄ¸ÅÂÊΪ$\frac{1}{3}$£¬¼Ù¶¨ÊÔÑéºóÉúÎï³É»î£¬Ôò³Æ¸ÃÊÔÑé³É¹¦£¬Èç¹ûÉúÎï²»³É»î£¬Ôò³Æ¸Ã´ÎÊÔÑéÊÇʧ°ÜµÄ£®
£¨1£©¼×С×é×öÁËÈý´ÎÊÔÑ飬ÇóÖÁÉÙÁ½´ÎÊÔÑé³É¹¦µÄ¸ÅÂÊ£»
£¨2£©Èô¼×£®ÒÒÁ½Ð¡×é¸÷½øÐÐ2´ÎÊÔÑ飬ÉèÊÔÑé³É¹¦µÄ×Ü´ÎÊýΪ¦Î£¬Çó¦ÎµÄ·Ö²¼Áм°ÊýѧÆÚÍû£®

·ÖÎö £¨1£©Éè¼×С×é×öÁËÈý´ÎʵÑ飬ÖÁÉÙÁ½´ÎÊÔÑé³É¹¦ÎªÊ¼þA£¬ÔòP£¨A£©=${∁}_{3}^{2}$$£¨\frac{3}{4}£©^{2}$¡Á£¨1-$\frac{3}{4}$£©+${∁}_{3}^{3}$$£¨\frac{3}{4}£©^{3}$£¬¼´¿ÉµÃ³ö£»
£¨2£©ÓÉÌâÒâ¦ÎµÄȡֵΪ0£¬1£¬2£¬3£¬4£®ÀûÓÃÏ໥¶ÀÁ¢Ó뻥³âʼþµÄ¸ÅÂʼÆË㹫ʽ¼°Æä·Ö²¼ÁС¢ÊýѧÆÚÍû¼ÆË㹫ʽ¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©Éè¼×С×é×öÁËÈý´ÎʵÑ飬ÖÁÉÙÁ½´ÎÊÔÑé³É¹¦ÎªÊ¼þA£¬Ôò
P£¨A£©=${∁}_{3}^{2}$$£¨\frac{3}{4}£©^{2}$¡Á£¨1-$\frac{3}{4}$£©+${∁}_{3}^{3}$$£¨\frac{3}{4}£©^{3}$=$\frac{27}{32}$£¬
£¨2£©ÓÉÌâÒâ¦ÎµÄȡֵΪ0£¬1£¬2£¬3£¬4£®
P£¨¦Î=0£©=${∁}_{2}^{0}¡Á£¨\frac{3}{4}£©^{0}¡Á£¨\frac{1}{4}£©^{2}$¡Á${∁}_{2}^{0}$¡Á$£¨\frac{1}{3}£©^{0}¡Á£¨\frac{2}{3}£©^{2}$=$\frac{4}{144}$£¬
P£¨¦Î=1£©=${∁}_{2}^{1}$¡Á$\frac{3}{4}$¡Á$\frac{1}{4}$¡Á${∁}_{2}^{0}$¡Á$£¨\frac{1}{3}£©^{0}¡Á£¨\frac{2}{3}£©^{2}$+${∁}_{2}^{0}¡Á£¨\frac{3}{4}£©^{0}¡Á£¨\frac{1}{4}£©^{2}$¡Á${∁}_{2}^{1}$¡Á$\frac{1}{3}$¡Á$\frac{2}{3}$=$\frac{28}{144}$£¬
P£¨¦Î=2£©=${∁}_{2}^{2}$¡Á$£¨\frac{3}{4}£©^{2}$¡Á${∁}_{2}^{0}$¡Á$£¨\frac{1}{3}£©^{0}¡Á£¨\frac{2}{3}£©^{2}$+${∁}_{2}^{0}¡Á£¨\frac{3}{4}£©^{0}¡Á£¨\frac{1}{4}£©^{2}$¡Á${∁}_{2}^{2}$¡Á$£¨\frac{1}{3}£©^{2}$+${∁}_{2}^{1}¡Á\frac{3}{4}¡Á\frac{1}{4}$¡Á${∁}_{2}^{1}¡Á\frac{1}{3}¡Á\frac{2}{3}$=$\frac{61}{144}$£¬
P£¨¦Î=3£©=${∁}_{2}^{2}$¡Á$£¨\frac{3}{4}£©^{2}$¡Á${∁}_{2}^{1}$¡Á$\frac{1}{3}$¡Á$\frac{2}{3}$+${∁}_{2}^{1}$¡Á$\frac{3}{4}$¡Á$\frac{1}{4}$¡Á${∁}_{2}^{2}¡Á£¨\frac{1}{3}£©^{2}$=$\frac{42}{144}$£¬
P£¨¦Î=4£©=${∁}_{2}^{2}$¡Á$£¨\frac{3}{4}£©^{2}$¡Á${∁}_{2}^{2}¡Á£¨\frac{1}{3}£©^{2}$=$\frac{9}{144}$£®
¹Ê¦ÎµÄ·Ö²¼ÁÐΪ£º

¦Î01234
P$\frac{4}{144}$$\frac{28}{144}$$\frac{61}{144}$$\frac{42}{144}$$\frac{9}{144}$
¡àE£¨¦Î£©=0¡Á$\frac{4}{144}$+1¡Á$\frac{28}{144}$+2¡Á$\frac{61}{144}$+3¡Á$\frac{42}{144}$+4¡Á$\frac{9}{144}$=$\frac{13}{6}$£®

µãÆÀ ±¾Ì⿼²éÁËÏ໥¶ÀÁ¢Ó뻥³âʼþµÄ¸ÅÂʼÆË㹫ʽ¡¢Ëæ»ú±äÁ¿µÄÊýѧÆÚÍû¼ÆË㹫ʽ£¬¿¼²éÁË·ÖÀàÌÖÂÛ˼Ïë·½·¨¡¢ÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬Ô²CµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=a+cos¦È}\\{y=sin¦È}\end{array}\right.$ʱ£¬£¨¦ÈΪ²ÎÊý£©£®ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ¦Ñsin£¨¦È-$\frac{¦Ð}{4}$£©=$\frac{\sqrt{2}}{2}$£®ÈôÖ±ÏßlÓëÔ²CÏàÇУ¬ÔòʵÊýaµÄȡֵ¸öÊýΪ£¨¡¡¡¡£©
A£®0B£®1C£®2D£®3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®½«º¯Êýf£¨x£©=$\sqrt{3}sinxcosx+{cos^2}x-\frac{1}{2}$µÄͼÏóÏò×óÆ½ÒÆ$\frac{¦Ð}{6}$¸öµ¥Î»µÃµ½º¯Êýg£¨x£©µÄͼÏó£¬Ôòº¯Êýg£¨x£©ÊÇ£¨¡¡¡¡£©
A£®ÖÜÆÚΪ¦ÐµÄÆæº¯ÊýB£®ÖÜÆÚΪ¦ÐµÄżº¯Êý
C£®ÖÜÆÚΪ2¦ÐµÄÆæº¯ÊýD£®ÖÜÆÚΪ2¦ÐµÄżº¯Êý

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®Ð´³öÏÂÁÐÃüÌâµÄ·ñ¶¨ÐÎʽºÍ·ñÃüÌ⣺
£¨1£©Èôxy=0£¬Ôòx¡¢yÖÐÖÁÉÙÓÐÒ»¸öΪÁ㣻
£¨2£©Èôa+b=0£¬Ôòa¡¢bÖÐ×î¶àÓÐÒ»¸ö´óÓÚÁ㣻
£¨3£©ÈôËıßÐÎÊÇÆ½ÐÐËıßÐΣ¬ÔòÆäÏàÁÚÁ½¸öÄÚ½ÇÏàµÈ£»
£¨4£©ÓÐÀíÊý¶¼ÄÜд³ö·ÖÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÇóÏÂÁк¯ÊýµÄ×î´óÖµÓë×îСֵ
£¨1£©f£¨x£©=lnx+ln£¨2-x£©£¬x¡Ê[$\frac{1}{2}$£¬1]£»
£¨2£©f£¨x£©=x3-3x2+2£¬x¡Ê[-1£¬3]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÔÚÒ»´ÎÊýѧ²âÊÔÖУ¬¼×¡¢ÒÒÁ½¸öС×é¸÷12È˵ijɼ¨ÈçÏÂ±í£º£¨µ¥Î»£º·Ö£©
¼××é918682759390688276949264
ÒÒ×é778495819869728893657085
Èô³É¼¨ÔÚ90·ÖÒÔÉÏ£¨°üÀ¨90·Ö£©µÄµÈ¼¶¼ÇΪ¡°ÓÅÐ㡱£¬ÆäÓàµÄµÈ¼¶¶¼¼ÇΪ¡°ºÏ¸ñ¡±£®
£¨¢ñ£©ÔÚÒÔÉÏ24ÈËÖУ¬Èç¹û°´µÈ¼¶Ó÷ֲã³éÑùµÄ·½·¨´ÓÖгéÈ¡6ÈË£¬ÔÙ´ÓÕâ6ÈËÖÐËæ»úÑ¡³ö2ÈË£¬ÇóÑ¡³öµÄ2ÈËÖÐÖÁÉÙÓÐÒ»È˵ȼ¶Îª¡°ÓÅÐ㡱µÄ¸ÅÂÊ£»
£¨¢ò£©Èô´ÓËùÓеȼ¶Îª¡°ÓÅÐ㡱µÄÈ˵±ÖÐÑ¡³ö3ÈË£¬ÓÃX±íʾÆäÖÐÒÒ×éµÄÈËÊý£¬ÇóËæ»ú±äÁ¿XµÄ·Ö²¼Áк͵ÄÊýѧÆÚÍû£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ºÐ×ÓÖÐ×°ÓС°ºÚÌÒ¡¢ºìÌÒ¡¢Ã·»¨¡¢·½¿é¡±4ÖÖ²»Í¬»¨É«µÄÆË¿ËÅÆ¸÷3ÕÅ£¬´ÓÖÐÒ»´ÎÈÎÈ¡3ÕÅÅÆ£¬Ã¿ÕÅÅÆ±»È¡³öµÄ¿ÉÄÜÐÔ¶¼ÏàµÈ£®
£¨¢ñ£©ÇóÈ¡³öµÄ3ÕÅÅÆÖеύɫ»¥²»ÏàͬµÄ¸ÅÂÊ£»
£¨¢ò£©ÓÃX±íʾȡ³öµÄ3ÕÅÅÆÖл¨É«ÊÇ¡°ºÚÌÒ¡±µÄÕÅÊý£¬ÇóËæ»ú±äÁ¿XµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÈôʵÊýx£¬yÂú×ã|x-3|¡Üy¡Ü1£¬Ôòz=$\frac{2x+y}{x+y}$µÄ×îСֵΪ$\frac{5}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®º¯Êýf£¨x£©=$\left\{\begin{array}{l}{\sqrt{1-{x}^{2}}£¬-1¡Üx£¼1}\\{lgx£¬x¡Ý1}\end{array}\right.$µÄÁãµã¸öÊýÊÇ£¨¡¡¡¡£©
A£®0B£®1C£®2D£®3

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸