精英家教网 > 高中数学 > 题目详情
7.将函数f(x)=$\sqrt{3}sinxcosx+{cos^2}x-\frac{1}{2}$的图象向左平移$\frac{π}{6}$个单位得到函数g(x)的图象,则函数g(x)是(  )
A.周期为π的奇函数B.周期为π的偶函数
C.周期为2π的奇函数D.周期为2π的偶函数

分析 由三角函数中的恒等变换应用化简函数解析式可得f(x)=sin(2x+$\frac{π}{6}$),可得g(x)=cos2x,由三角函数的图象与性质可得函数g(x)是周期为π的偶函数.

解答 解:∵f(x)=$\sqrt{3}sinxcosx+{cos^2}x-\frac{1}{2}$=$\frac{\sqrt{3}}{2}$sin2x+$\frac{1}{2}$cos2x=sin(2x+$\frac{π}{6}$)
∴g(x)=sin[2(x+$\frac{π}{6}$)+$\frac{π}{6}$]=sin(2x+$\frac{π}{2}$)=cos2x
∴T=$\frac{2π}{2}$=π,即函数g(x)是周期为π的偶函数.
故选:B.

点评 本题考查三角恒等变换,三角函数的图象与性质、图象变换,属于中等题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.在△ABC中,内角A,B,C所对的边分别为a,b,c,且asinA+bsinB-csinC=bsinA.
(Ⅰ)求∠C的度数;
(Ⅱ)若c=2,求AB边上的高CD的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.问题:①某地区10000名中小学生,其中高中生2000名,初中生4500名,小学生3500名,现从中抽取容量为200的样本;②从1002件同一生产线生产的产品中抽取20件产品进行质量检查.方法:Ⅰ、随机抽样法Ⅱ、分层抽样法Ⅲ、系统抽样法.其中问题与方法配对较适宜的是(  )
A.①Ⅰ,②ⅡB.①Ⅲ,②ⅠC.①Ⅱ,②ⅢD.①Ⅲ,②Ⅱ

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列函数中,既是奇函数又在其定义域上是增函数的是(  )
A.$y=-\frac{2}{x}$B.y=x3C.y=log2xD.y=tanx

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=lnx-ax+$\frac{a}{x}$,其中a为常数.
(Ⅰ)若f(x)的图象在x=1处的切线经过点(3,4),求a的值;
(Ⅱ)若0<a<1,求证:$f(\;\frac{a^2}{2}\;)>0$;
(Ⅲ)当函数f(x)存在三个不同的零点时,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.三棱锥O-ABC中,OA⊥OB,OB⊥OC,OC⊥OA,若OA=OB=a,OC=b,D是该三棱锥外部(不含表面)的一点,给出下列四个命题,
①存在无数个点D,使OD⊥面ABC;
②存在唯一点D,使四面体ABCD为正三棱锥;
③存在无数个点D,使OD=AD=BD=CD;
④存在唯一点D,使四面体ABCD有三个面为直角三角形.
其中正确命题的序号是①④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设函数f(x)=-x2+6x-4lnx在点P(x0,f(x0))处的切线方程为l:y=g(x),若?x∈(0,x0)∪(x0,+∞),都有$\frac{f(x)-g(x)}{x-{x}_{0}}$<0成立,则x0的值为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某高中有甲、乙两个生物兴趣小组,分别独立开展对一种海洋生物离开恒温箱的成活情况进行研究,每次试验一个生物,甲组能使生物成活的概率为$\frac{3}{4}$,乙组能使生物成活的概率为$\frac{1}{3}$,假定试验后生物成活,则称该试验成功,如果生物不成活,则称该次试验是失败的.
(1)甲小组做了三次试验,求至少两次试验成功的概率;
(2)若甲.乙两小组各进行2次试验,设试验成功的总次数为ξ,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图、已知直三棱柱ABC-A1B1C1中,AB=4,AC=BC=3,D为AB的中点.
(Ⅰ)求证:CD⊥A1D;
(Ⅱ)若AB1⊥A1C,求二面角A1-CD-B1的平面角的余弦值.

查看答案和解析>>

同步练习册答案