【题目】设函数f(x)=ax2–a–lnx,g(x)=
,其中a∈R,e=2.718…为自然对数的底数.
(1)讨论f(x) 的单调性;
(2)证明:当x>1时,g(x)>0;
(3)如果f(x)>g(x) 在区间(1,+∞)内恒成立,求实数a的取值范围.
【答案】(1)见解析;(2)见解析;(3)![]()
【解析】
试题分析:本题考查导数的计算、利用导数求函数的单调性,最值、解决恒成立问题,考查学生的分析问题解决问题的能力和计算能力.第一问,对
求导,对a进行讨论,判断函数的单调性;第二问,利用导数判断函数的单调性,判断最值,证明结论,第三问,构造函数
=
(
),利用导数判断函数
的单调性,求出函数
的最值,从而证明结论.
试题解析:(Ⅰ)![]()
<0,
在
内单调递减.
由
=0,有
.
当
时,
<0,
单调递减;
当
时,
>0,
单调递增.
(Ⅱ)令
=
,则
=
.
当
时,
>0,所以
,从而
=
>0.
(Ⅲ)由(Ⅱ),当
时,
>0.
当
,
时,
=
.
故当
>
在区间
内恒成立时,必有
.
当
时,
>1.
由(Ⅰ)有
,从而
,
所以此时
>
在区间
内不恒成立.
当
时,令
=
(
).
当
时,
=
.
因此
在区间
单调递增.
又因为
=0,所以当
时,
=
>0,即
>
恒成立.
综上,
.
科目:高中数学 来源: 题型:
【题目】某高校在2012年的自主招生考试成绩中随机抽取
名中学生的笔试成绩,按成绩分组,得到的频率分布表如表所示.
组号 | 分组 | 频数 | 频率 |
第1组 |
| 5 |
|
第2组 |
| ① |
|
第3组 |
| 30 | ② |
第4组 |
| 20 |
|
第5组 |
| 10 |
|
![]()
(1)请先求出频率分布表中
位置的相应数据,再完成频率分布直方图;
(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第
组中用分层抽样抽取名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试;
(3)在(2)的前提下,学校决定在
名学生中随机抽取
名学生接受
考官进行面试,求:第
组至少有一名学生被考官
面试的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】小李大学毕业后选择自主创业,开发了一种新型电子产品.2019年9月1日投入市场销售,在9月份的30天内,前20天每件售价
(元)与时间
(天,
)满足一次函数关系,其中第一天每件售价为63元,第10天每件售价为90元;后10天每件售价均为120元.已知日销售量
(件)与时间
(天)之间的函数关系是
.
(1)写出该电子产品9月份每件售价
(元)与时间
(天)的函数关系式;
(2)9月份哪一天的日销售金额最大?并求出最大日销售金额.(日销售金额=每件售价
日销售量).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若数列
对任意
满足
,下面给出关于数列
的四个命题:①
可以是等差数列,②
可以是等比数列;③
可以既是等差又是等比数列;④
可以既不是等差又不是等比数列;则上述命题中,正确的个数为( )
A. 1个B. 2个C. 3个D. 4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】交强险是车主必须为机动车购买的险种,若普通
座以下私家车投保交强险第一年的费用(基准保费)统一为
元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如下表(其中浮动比率是在基准保费上上下浮动):
交强险浮动因素和浮动费率比率表 | ||
浮动因素 | 浮动比率 | |
| 上一个年度未发生有责任道路交通事故 | 下浮 |
| 上两个年度未发生有责任道路交通事故 | 下浮 |
| 上三个及以上年度未发生有责任道路交通事故 | 下浮 |
| 上一个年度发生一次有责任不涉及死亡的道路交通事故 |
|
| 上一个年度发生两次及两次以上有责任道路交通事故 | 上浮 |
| 上一个年度发生有责任道路交通死亡事故 | 上浮 |
某机构为了研究某一品牌普通
座以下私家车的投保情况,随机抽取了
辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:
类型 |
|
|
|
|
|
|
数量 |
|
|
|
|
|
(Ⅰ)求这
辆车普通
座以下私家车在第四年续保时保费的平均值(精确到
元)
(Ⅱ)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基准保费的车辆记为事故车.假设购进一辆事故车亏损
元,一辆非事故车盈利
元,且各种投保类型车的频率与上述机构调查的频率一致.试完成下列问题:
①若该销售商店内有六辆(车龄已满三年)该品牌二手车,某顾客欲在该店内随机挑选
辆车,求这
辆车恰好有一辆为事故车的概率;
②若该销售商一次购进
辆车(车龄已满三年)该品牌二手车,求一辆车盈利的平均值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“大众创业,万众创新”是李克强总理在本届政府工作报告中向全国人民发出的口号.某生产企业积极响应号召,大力研发新产品,为了对新研发的一批产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组销售数据![]()
,如表所示:
试销单价 | 4 | 5 | 6 | 7 | 8 | 9 |
产品销量 | q | 84 | 83 | 80 | 75 | 68 |
已知
,
.
(Ⅰ)求出
的值;
(Ⅱ)已知变量
,
具有线性相关关系,求产品销量
(件)关于试销单价
(元)的线性回归方程
;
(Ⅲ)用
表示用(Ⅱ)中所求的线性回归方程得到的与
对应的产品销量的估计值.当销售数据
对应的残差的绝对值
时,则将销售数据
称为一个“好数据”.现从6个销售数据中任取2个,求“好数据”至少有一个的概率.
(参考公式:线性回归方程中
,
的最小二乘估计分别为
,
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如果存在函数
(
为常数),使得对函数
定义域内任意
都有
成立,那么称
为函数
的一个“线性覆盖函数”.给出如下四个结论:
①函数
存在“线性覆盖函数”;
②对于给定的函数
,其“线性覆盖函数”可能不存在,也可能有无数个;
③
为函数
的一个“线性覆盖函数”;
④若
为函数
的一个“线性覆盖函数”,则![]()
其中所有正确结论的序号是___________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
上任意一点到两焦点
距离之和为
,离心率为
.
(1)求椭圆的标准方程;
(2)若直线
的斜率为
,直线
与椭圆C交于
两点.点
为椭圆上一点,求
的面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com