精英家教网 > 高中数学 > 题目详情
11.在△ABC中,a=x,b=2,B=30°,若这个三角形有两解,则x的取值范围是(2,4 ).

分析 由题意判断出三角形有两解时,A的范围,通过正弦定理及正弦函数的性质推出x的范围即可.

解答 解:由AC=b=2,要使三角形有两解,就是要使以C为圆心,半径为2的圆与BA有两个交点,
当A=90°时,圆与AB相切;
当A=30°时交于B点,也就是只有一解,
∴30°<A<150°,且A≠90°,即 $\frac{1}{2}$<sinA<1,
由正弦定理以及asinB=bsinA.可得:a=x=$\frac{bsinA}{sinB}$=4sinA,
∵4sinA∈(2,4 ).
∴x的取值范围是(2,4 ).
故答案为:(2,4 ).

点评 此题考查了正弦定理,正弦函数的图象与性质,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.如图是某几何体的三视图,其中正视图为正方形,俯视图是腰长为2的等腰直角三角形,则该几何体的体积为$\underline{\frac{8}{3}}$;表面积为6+4$\sqrt{2}+2\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=$\left\{\begin{array}{l}{1-|x|,x≤1}\\{(x-1)^{2},x>1}\end{array}\right.$,函数g(x)=$\frac{4}{5}$-f(1-x),则函数y=f(x)-g(x)的零点的个数为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知i是虚数单位,复数z=(m-1)(m-2)+(m-2)i,m∈R,若z是纯虚数,则m=(  )
A.1B.2C.1或2D.1或-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知$\overrightarrow{a}$=(sinωx+cosωx,$\sqrt{3}$cosωx),$\overrightarrow{b}$=(cosωx-sinωx,2sinωx)(ω>0),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$,若f(x)的最小正周期为π.
(1)求f(x)的解析式;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,若f(A)=1,a=$\sqrt{21}$,b+c=9,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设A={1,2,3,4,5,6},B={4,5,6,7},则满足S⊆A且S∩B=∅的集合S的个数是8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)是偶函数,当x>0时,f(x)=4m-x,且f(-2)=$\frac{1}{8}$,则m的值为(  )
A.-lB.1C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若函数y=f(x)的定义域是[-2,3],则函数y=f(x+1)+f(x-1)的定义域为[-1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列命题说法正确的是(  )
A.若α>β,则sinα>sinβ
B.数列{an},{bn}为等比数列,则数列{an+bn}为等比数列
C.函数f(x),g(x)均为增函数,则函数f(x)•g(x)为增函数
D.在△ABC中,若a>b,则sinA>sinB

查看答案和解析>>

同步练习册答案