精英家教网 > 高中数学 > 题目详情
18.复数$z=\frac{2+mi}{1+i}(m∈R)$是实数,则m=(  )
A.-2B.-1C.1D.2

分析 利用复数代数形式的乘除运算化简,再由虚部为0求得m值.

解答 解:∵$z=\frac{2+mi}{1+i}=\frac{(2+mi)(1-i)}{(1+i)(1-i)}=\frac{(2+m)+(m-2)i}{2}$是实数,
∴m-2=0,解m=2.
故选:D.

点评 本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.使函数f(x)=2x3-9x2+12x-a图象与x轴恰有两个不同的交点,则实数a可能的取值为(  )
A.8B.6C.4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在等差数列{an}中,a5=9,且2a3=a2+6,则a1等于(  )
A.-3B.-2C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.关于曲线C:x2+y4=1,给出下列四个命题:
①曲线C有两条对称轴,一个对称中心;  
②曲线C上的点到原点距离的最小值为$\frac{1}{2}$;
③曲线C的长度l满足l>4$\sqrt{2}$;     
④曲线C所围成图形的面积S满足π<S<4.
上述命题中,则真命题的个数有3个.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若复数z=(m2-9)+(m2+2m-3)i是纯虚数,其中m∈R,则|z|=12.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设a为正实数,i为虚数单位,z=1-ai,若|z|=2,则a=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知cos2α=sinα,则$\frac{1}{sinα}+{cos^4}α$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知f(x)=cos(ωx+φ)(ω>0),f'(x)是f(x)的导函数,若f(α)=0,f'(α)>0,且f(x)在[α,π+α)上没有最小值,则ω的取值范围是(  )
A.$(0,\frac{1}{2})$B.$(0,\frac{3}{2}]$C.$(1,\frac{3}{2}]$D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在钝角△ABC中,a、b、c分别为角A、B、C的对边,已知面积S=$\frac{1}{2},AB=1,BC=\sqrt{2}$,则AC=(  )
A.5B.$\sqrt{5}$C.2D.1

查看答案和解析>>

同步练习册答案