精英家教网 > 高中数学 > 题目详情
6.关于曲线C:x2+y4=1,给出下列四个命题:
①曲线C有两条对称轴,一个对称中心;  
②曲线C上的点到原点距离的最小值为$\frac{1}{2}$;
③曲线C的长度l满足l>4$\sqrt{2}$;     
④曲线C所围成图形的面积S满足π<S<4.
上述命题中,则真命题的个数有3个.

分析 由曲线C的方程可得x2+y2≥1,|x|≤1,|y|≤1,从而可得出曲线C的大体范围,结合图形推导结论.

解答 解:设P(x,y)是曲线上一点,则P关于x轴的对称点(x,-y)显然也在曲线C上,
∴曲线C关于x轴对称,
同理可得曲线C关于y轴对称,关于原点对称,故①正确;
∵x2=1-y4=(1-y2)•(1+y2)≥(1-y2),∴x2+y2≥1,即$\sqrt{{x}^{2}+{y}^{2}}$≥1.
∴曲线上任意一点到原点的距离最小值为1,(当且仅当y=0时,x等于1)
故②错误;
由②可得,曲线C所上的点在单位圆x2+y2=1的外部或圆上,∴S>π,
由x2+y4=1可得|x|≤1,|y|≤1,(不能同时取1)
∴曲线C上的点在以2为边长的正方形ABCD内部或边上,∴S<4,
故④正确;
设曲线C的上顶点为M,右顶点为N,则MN=$\sqrt{2}$,
由两点之间线段最短可知曲线C在第一象限内的长度大于$\sqrt{2}$,
同理曲线C在每一象限内的长都大于$\sqrt{2}$,故l>4$\sqrt{2}$,故③正确.
故答案为:3.

点评 本题考查曲线的性质,命题的真假判断,注意运用不等式的性质和数形结合的思想方法,考查推理能力和判断能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.在直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}x=tcosα\\ y=1+tsinα\end{array}\right.$(t为参数,α∈[0,π)).以原点O为极点,以x轴正半轴为极轴,与直角坐标系xOy取相同的长度单位,建立极坐标系.设曲线C的极坐标方程为ρcos2θ=4sinθ.
(Ⅰ)设M(x,y)为曲线C上任意一点,求x+y的取值范围;
(Ⅱ)若直线l与曲线C交于两点A,B,求|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知向量$\overrightarrow a=(1,\sqrt{3})$,$|{\overrightarrow b}|=4$,且($\overrightarrow a$+$\overrightarrow b$)⊥$\overrightarrow a$,则$\overrightarrow a$与$\overrightarrow b$的夹角是(  )
A.$\frac{2π}{3}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知复数z满足($\sqrt{3}$+3i)z=3i,则z等于(  )
A.$\frac{3}{2}$-$\frac{\sqrt{3}}{2}$iB.$\frac{3}{4}$-$\frac{\sqrt{3}}{4}$iC.$\frac{3}{2}$+$\frac{\sqrt{3}}{2}$iD.$\frac{3}{4}$+$\frac{\sqrt{3}}{4}$i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.若${(1+x)^6}{(1-2x)^5}={a_0}+{a_1}x+{a_2}{x^2}+…+{a_{11}}{x^{11}}$,求
(1)a1+a2+a3+…+a11
(2)a0+a2+a4+…+a10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在四棱锥S-ABCD中,SA⊥平面ABCD,底面ABCD为直角梯形,AD∥BC,∠ABC=90°,SA=AB=AD=1,BC=2.
(1)求异面直线BC与SD所成角的大小;
(2)求直线SC与平面SAB所成角的正切值;
(3)求三棱锥D-SBC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.复数$z=\frac{2+mi}{1+i}(m∈R)$是实数,则m=(  )
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=cosx(2sinx+mcosx)的图象经过点P(π,-2$\sqrt{3}$).
(1)求m的值以及f($\frac{π}{6}$);
(2)函数f(x)的图象向右平移$\frac{π}{6}$后得到函数g(x)的图象,求g(x)在[0,$\frac{π}{2}$]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}的前n项和为Tn,且Tn=-an+$\frac{1}{2},n∈{N^*}$,设${b_n}+2=3{log_{\frac{1}{2}}}{a_n}({n∈{N^*}})$,数列{cn}满足cn=an•bn
(1)求数列{bn}的通项公式;
(2)求数列{cn}的前n项和Sn
(3)若cn≤$\frac{1}{4}{m^2}$+m+1对一切正整数n恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案