分析 (1)由条件求得m的值,再利用三角恒等变换,化简f(x)的解析式,可得f($\frac{π}{6}$)的值.
(2)利用函数y=Asin(ωx+φ)的图象变换规律求得g(x)的解析式,再利用正弦函数的定义域和值域,求得g(x)在[0,$\frac{π}{2}$]上的值域.
解答 解:(1)∵函数f(x)=cosx(2sinx+mcosx)的图象经过点P(π,-2$\sqrt{3}$),可得cosπ(2sinπ+mcosπ)=-2$\sqrt{3}$,
即-1×(0-m)=-2$\sqrt{3}$,∴m=-2$\sqrt{3}$,∴f(x)=cosx(2sinx+mcosx)=cosx(2sinx-2$\sqrt{3}$cosx)=sin2x-2$\sqrt{3}$•$\frac{1+cos2x}{2}$=2sin(2x-$\frac{π}{3}$)-$\sqrt{3}$,
∴f($\frac{π}{6}$)=2sin0-$\sqrt{3}$=-$\sqrt{3}$.
(2)函数f(x)=2sin(2x-$\frac{π}{3}$)-$\sqrt{3}$的图象向右平移$\frac{π}{6}$后,得到函数g(x)=2sin(2x-$\frac{2π}{3}$)-$\sqrt{3}$的图象,
在[0,$\frac{π}{2}$]上,2x-$\frac{2π}{3}$∈[-$\frac{2π}{3}$,$\frac{π}{3}$],sin(2x-$\frac{2π}{3}$)∈[-1,$\frac{\sqrt{3}}{2}$],f(x)∈[-2-$\sqrt{3}$,0],
即g(x)在[0,$\frac{π}{2}$]上的值域为[-2-$\sqrt{3}$,0].
点评 本题主要考查三角恒等变换,函数y=Asin(ωx+φ)的图象变换规律,正弦函数的定义域和值域,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{8}{13}$ | B. | $\frac{9}{13}$ | C. | $\frac{10}{13}$ | D. | $\frac{11}{13}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -21007excosx | B. | -21007ex(cosx-sinx) | ||
| C. | 21008exsinx | D. | 21008ex(sinx+cosx) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(0,\frac{1}{2})$ | B. | $(0,\frac{3}{2}]$ | C. | $(1,\frac{3}{2}]$ | D. | (1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | xy=-1 | B. | xy=1 | C. | y2-x2=2 | D. | y2-x2=1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com