精英家教网 > 高中数学 > 题目详情
10.与$\frac{π}{3}$终边相同的角的集合是{α|α=2kπ+$\frac{π}{3}$,k∈Z}.

分析 终边相同的角相差了2π的整数倍,从而写出结果即可.

解答 解:终边相同的角相差了2π的整数倍,
设与$\frac{π}{3}$角的终边相同的角是α,则与$\frac{π}{3}$终边相同的角的集合是:{α|α=2kπ+$\frac{π}{3}$,k∈Z}.
故答案为:{α|α=2kπ+$\frac{π}{3}$,k∈Z}.

点评 本题考查终边相同的角的概念及终边相同的角的表示形式,基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{{b}^{2}}$=1(b>0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A,B,C,D四点,四边形ABCD的面积为2b,则双曲线的方程为(  )
A.$\frac{{x}^{2}}{4}$-$\frac{3{y}^{2}}{4}$=1B.$\frac{{x}^{2}}{4}$-$\frac{4{y}^{2}}{3}$=1C.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{4}$=1D.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.{an}中,a1=1,an+1=$\frac{3{a}_{n}}{{a}_{n}+3}$,证明{$\frac{1}{{a}_{n}}$}是等差数列,并求{an}通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知点P(sinθ-cosθ,sinθ+cosθ)在第一象限,则在[0,2π)内θ的取值范围是(  )
A.($\frac{π}{2}$,$\frac{3π}{4}$)B.($\frac{π}{4}$,$\frac{3π}{4}$)C.($\frac{3π}{4}$,$\frac{5π}{4}$)D.($\frac{5π}{4}$,2π)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设a,b∈R,c∈[0,2π),若对于任意实数x都有2sin(3x-$\frac{π}{3}$)=asin(bx+c),则满足条件的有序实数组(a,b,c)的组数为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若两个等差数列{an}、{bn}的前n项和分别为An、Bn,且满足$\frac{A_n}{B_n}=\frac{4n+2}{5n-5}$,则$\frac{{a}_{13}}{{b}_{13}}$的值为(  )
A.$\frac{51}{60}$B.$\frac{60}{51}$C.$\frac{19}{20}$D.$\frac{7}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,a,b,c分别是角A,B,C的对边,且sin(A+$\frac{π}{3}$)=4sin$\frac{A}{2}$cos$\frac{A}{2}$.
(Ⅰ)求角A的大小;
(Ⅱ)若sinB=$\sqrt{3}$sinC,a=1,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在四棱锥P-ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=CD=$\frac{1}{2}$AD.E为棱AD的中点,异面直线PA与CD所成的角为90°.
(Ⅰ)在平面PAB内找一点M,使得直线CM∥平面PBE,并说明理由;
(Ⅱ)若二面角P-CD-A的大小为45°,求直线PA与平面PCE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列极坐标方程中,对应的曲线为如图所示的是(  )
A.ρ=6+5cosθB.ρ=6+5sinθC.ρ=6-5cosθD.ρ=6-5sinθ

查看答案和解析>>

同步练习册答案