精英家教网 > 高中数学 > 题目详情
6.已知△ABC满足|AB|=3,|AC|=4,O是△ABC的外心,且$\overrightarrow{AO}$=λ$\overrightarrow{AB}$+$\frac{1-λ}{2}$$\overrightarrow{AC}$(λ∈R),则△ABC的面积是$2\sqrt{5}$或$\frac{3\sqrt{7}}{2}$.

分析 设AC的中点为D,根据条件和O是△ABC的外心,利用两个向量的加减法的法则及其几何意义,求出$\overrightarrow{BO}=(1-λ)\overrightarrow{BD}$,可得BD⊥AC和B、O、D三点共线,在直角三角形中求出
sin∠BAC,代入三角形的面积公式求出△ABC的面积;当λ=0时,AB⊥BC,由三角形是直角三角形和勾股定理,求出△ABC的面积.

解答 解:如图:O是△ABC的外心,设AC的中点为D,
∵$\overrightarrow{AO}=λ\overrightarrow{AB}+\frac{1-λ}{2}\overrightarrow{AC}$,
∴$\overrightarrow{BO}=\overrightarrow{AO}-\overrightarrow{AB}$=$(λ-1)\overrightarrow{AB}+\frac{1-λ}{2}\overrightarrow{AC}$=$(λ-1)\overrightarrow{AB}+\frac{1-λ}{2}(\overrightarrow{BC}-\overrightarrow{BA})$=$\frac{1-λ}{2}(\overrightarrow{BC}+\overrightarrow{BA})$,
则$\overrightarrow{BC}+\overrightarrow{BA}=2\overrightarrow{BD}$,
∴$\overrightarrow{BO}=(1-λ)\overrightarrow{BD}$,即B、O、D三点共线.
∵O是△ABC的外心,∴OD⊥AC,则BD⊥AC,∴sin∠BAC=$\frac{BD}{AB}$=$\frac{\sqrt{9-4}}{3}$=$\frac{\sqrt{5}}{3}$,
∴△ABC的面积S=$\frac{1}{2}×|AB|×|AC|×sin∠BAC$=$2\sqrt{5}$;
当λ=0时,此时$\overrightarrow{AO}=\frac{1}{2}\overrightarrow{AC}$,即AB⊥BC,
∴△ABC的面积S=$\frac{1}{2}×|AB|×|BC|$=$\frac{1}{2}×3×\sqrt{16-9}$=$\frac{3\sqrt{7}}{2}$,
综上可得,△ABC的面积是$2\sqrt{5}$或$\frac{3\sqrt{7}}{2}$
故答案为:$2\sqrt{5}$或$\frac{3\sqrt{7}}{2}$.

点评 本题考查向量的基本定理和运算法则、两个向量的加减法的法则及其几何意义,三角形的外心定理、直角三角形的边角关系,以及三角形的面积公式,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.在△ABC中,AB=3,AC=4,BC=5.若I为△ABC的内心,则$\overrightarrow{CI}$•$\overrightarrow{CB}$的值为(  )
A.6B.10C.12D.15

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知点M(1,1),N(4,-3),则与向量$\overrightarrow{MN}$共线的单位向量为(  )
A.($\frac{3}{5}$,-$\frac{4}{5}$)B.(-$\frac{3}{5}$,$\frac{4}{5}$)C.($\frac{3}{5}$,-$\frac{4}{5}$)或(-$\frac{3}{5}$,$\frac{4}{5}$)D.($\frac{4}{5}$,-$\frac{3}{5}$)或(-$\frac{4}{5}$,$\frac{3}{5}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知圆x2+y2=4,点A($\sqrt{3}$,0),动点M在圆上运动,O为坐标原点,则∠OMA的最大值为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设x>0,y>0,2x+y=2,则$\frac{2}{x+1}$+$\frac{1}{y}$的最小值为$\frac{9}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设集合A={x|x2-4x+3=0}与B={x|ax-3=0},且B⊆A求实数a构成的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(1)求函数y=3sin(2x-$\frac{π}{6}$)的单调增区间;
(2)说出函数y=tan(x-3π)的周期和单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.当函数y=2cosx-3sinx取得最大值时,tanx的值是-$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源:2016-2017学年安徽六安一中高二上文周末检测三数学试卷(解析版) 题型:选择题

若数列的前4项为1,0,1,0,则这个数列的通项公式不可能是( )

A.

B.

C.

D.

查看答案和解析>>

同步练习册答案