精英家教网 > 高中数学 > 题目详情
15.在四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠ABC=90°,AB=PB=PC=BC=2CD,平面PBC⊥平面ABCD.
(Ⅰ)求证:AB⊥平面PBC;
(Ⅱ)求平面ADP与平面BCP所成的锐二面角的大小.

分析 (Ⅰ)证明AB⊥平面PBC,利用面面垂直的性质,根据AB⊥BC,平面PBC⊥平面ABCD,即可得证;
(Ⅱ)取BC的中点O,连接PO,以O为原点,OB所在的直线为x轴,在平面ABCD内过O垂直于BC的直线为y轴,OP所在直线为z轴建立空间直角坐标系O-xyz,求出平面ADP与平面BCP的法向量,利用向量的夹角公式,即可求平面ADP与平面BCP所成的锐二面角的大小.

解答 (Ⅰ)证明:因为∠ABC=90°,所以AB⊥BC,
因为平面PBC⊥平面ABCD,平面PBC∩平面ABCD=BC,AB?平面ABCD,
所以AB⊥平面PBC.
(Ⅱ)解:如图,取BC的中点O,连接PO,
因为PB=PC,所以PO⊥BC.
因为PB=PC,所以PO⊥BC,
因为平面PBC⊥平面ABCD,所以PO⊥平面ABCD.
以O为原点,OB所在的直线为x轴,在平面ABCD内过O垂直于BC的直线为y轴,OP所在直线为z轴建立空间直角坐标系O-xyz.
不妨设BC=2.由AB=PB=PC=BC=2CD得,$P(0,0,\sqrt{3}),D(-1,1,0),A(1,2,0)$,
所以$\overrightarrow{DP}=(1,-1,\sqrt{3}),\overrightarrow{DA}=(2,1,0)$,
设平面PAD的法向量为$\overrightarrow{m}$=(x,y,z).
所以$\left\{\begin{array}{l}x-y+\sqrt{3}z=0\\ 2x+y=0\end{array}\right.$.
令x=-1,则$y=2,z=\sqrt{3}$,所以$\overrightarrow{m}$=(-1,2,$\sqrt{3}$).
取平面BCP的一个法向量$\overrightarrow n=(0,1,0)$,
所以cos<$\overrightarrow{m}$,$\overrightarrow{n}$>=$\frac{\sqrt{2}}{2}$,
所以平面ADP与平面BCP所成的锐二面角的大小为$\frac{π}{4}$.

点评 本题考查线面垂直,考查平面ADP与平面BCP所成的锐二面角,解题的关键是掌握线面垂直的判定方法,正确运用向量法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知直线的极坐标方程为θ=$\frac{π}{4}$,它与曲线$\left\{\begin{array}{l}{x=1+2cosa}\\{y=2+2sina}\end{array}\right.$相交于A,B两点.
〔1〕求︳AB|的大小;
〔2〕求过极坐标点〔2,$\frac{4π}{3}$〕,且与曲线相切的直线的直角坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知一函数满足x>0时,有g′(x)=2x2>$\frac{g(x)}{x}$,则下列结论一定成立的是(  )
A.$\frac{g(2)}{2}$-g(1)≤3B.$\frac{g(2)}{2}$-g(1)≥2C.$\frac{g(2)}{2}$-g(1)<4D.$\frac{g(2)}{2}$-g(1)≥4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.某几何体的三视图如图所示,则该几何体的体积为26

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,四棱锥P-ABCD,侧面PAD是边长为2的正三角形,且与底面垂直,底面ABCD是∠ABC=60°的菱形,M为PC的中点,N为AC中点.
(Ⅰ)求证:PC⊥AD;
(Ⅱ)在棱PB上是否存在一点Q,使得面MNQ平行面PAD,若存在,指出点Q的位置并证明;若不存在,请说明理由;
(Ⅲ)求点D到平面PAM的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若函数f(x)=ax2+b|x|+c(a≠0)有四个单调区间,则实数a,b,c满足(  )
A.b2-4ac>0,a>0B.b2-4ac>0C.-$\frac{b}{2a}$>0D.-$\frac{b}{2a}$<0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知二次函数f(x)的二次项系数为正数,且对任意x∈R,都有f(x)=f(4-x)成立,若f(1-2x2)<f(1+2x-x2),则实数x的取值范围是(  )
A.(2,+∞)B.(-∞,-2)∪(0,2)C.(-2,0)D.(-∞,-2)∪(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,圆O的直径AB、BE为圆O的切线,点C为圆O上不同于A、B的一点,AD为∠BAC的平分线,且分别与BC交于H,与圆O交于D,与BE交于E,连结BD、CD.
(Ⅰ)求证:∠DBE=∠DBC; 
(Ⅱ)若HE=2a,求ED.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.某几何体三视图如图所示,则该几何体的体积为8-π.

查看答案和解析>>

同步练习册答案