精英家教网 > 高中数学 > 题目详情
3.某几何体的三视图如图所示,则该几何体的体积为26

分析 由三视图知几何体为三棱柱,去掉一个三棱锥的几何体,利用三视图的数据求解体积即可.

解答 解:由三视图知几何体为为三棱柱,去掉一个三棱锥的几何体,如图:
三棱柱的高为5,底面是直角边为4,3,去掉的三棱锥,是底面是直角三角形直角边为4,3,高为2的三棱锥.
∴几何体的体积V=$\frac{1}{2}×4×3×5$$-\frac{1}{3}×\frac{1}{2}×4×3×2$=26.
故答案为:26.

点评 本题考查由三视图求几何体的体积,解题的关键是由三视图判断几何体的形状及数据所对应的几何量.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知向量$\overrightarrow{b}$=(0,2)且$\overrightarrow{a}•\overrightarrow{b}$=1,则向量$\overrightarrow{a}$在$\overrightarrow{b}$方向上的投影为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某企业有甲、乙两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在[29.94,30.06)的零件为优质品.
从甲、乙两个分厂生产的零件中各抽出500件,量其内径尺寸的结果如下表:
甲厂的零件内径尺寸:
分组[29.86,29.90)[29.90,29.94)[29.94,29.98)[29.98,30.02)[30.02,30.06)[30.06,30.10)[30.10,30.14)
频数1530125198773520
乙厂的零件内径尺寸:
分组[29.86,29.90)[29.90,29.94)[29.94,29.98)[29.98,30.02)[30.02,30.06)[30.06,30.10)[30.10,30.14)
频数407079162595535
(Ⅰ)由以上统计数据填下面2×2列联表,并问是否有99.9%的把握认为“生产的零件是否为优质品与在不同分厂生产有关”;
甲厂   乙厂  合计
优质品
非优质品
合计
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
 P(K2≥k0 0.100 0.050     0.010      0.025     0.001
 k 2.706     3.841     5.024      6.635     10.828
(Ⅱ)现用分层抽样方法(按优质品和非优质品分两层)从乙厂中抽取5件零件,求从这5件零件中任意取出2件,至少有1件非优质品的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知圆的方程是x2+y2+2(m-1)x-4my+5m2-2m-8=0.
(1)求此圆的圆心和半径;
(2)求证:不论m为何实数,它们表示圆心在同一条直线上的等圆.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设i是虚数单位,那么使得${(-\frac{1}{2}+\frac{{\sqrt{3}}}{2}i)^n}=1$的最小正整数n的值为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设x∈R,若函数f(x)为单调递增函数,且对任意实数x,都有f[f(x)-2x]=3,则f(3)=(  )
A.1B.3C.6D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠ABC=90°,AB=PB=PC=BC=2CD,平面PBC⊥平面ABCD.
(Ⅰ)求证:AB⊥平面PBC;
(Ⅱ)求平面ADP与平面BCP所成的锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在如图所示的程序框图中,如果任意输入的t∈[-2,3],那么输出的s取值范围是(  )
A.[-8,-1]B.[-10,0]C.[-10,6]D.(-6,6]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在区间[-$\frac{π}{6}$,$\frac{π}{2}$]上随机取一个数x,则sinx+cosx∈[1,$\sqrt{2}$]的概率是$\frac{3}{4}$.

查看答案和解析>>

同步练习册答案