精英家教网 > 高中数学 > 题目详情
15.在长为8cm的线段AB上任取一点C,作一矩形,邻边长分别等于线段AC,CB的长,则该矩形面积小于15cm2的概率为(  )
A.$\frac{8}{15}$B.$\frac{3}{5}$C.$\frac{3}{4}$D.$\frac{2}{3}$

分析 求出矩形面积x小于15的等价条件,根据几何概型的概率公式即可得到结论.

解答 解:设AC=x,则CB=8-x,
则矩形的面积S=x(8-x),
由x(8-x)<15,得x2-8x+15>0,
解得0<x<3或5<x<8,
根据几何概型的概率公式可得所求的概率P=$\frac{3-0+8-5}{8}$=$\frac{3}{4}$,
故选:C

点评 本题主要考查几何概型的概率的计算,利用条件求出矩形面积小于15的等价条件是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.当正数a,b,满足$\frac{4}{a+5b}+\frac{1}{3a+2b}=6$时,则4a+7b的最小值$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在四边形ABCD中,$\overrightarrow{AB}$=$\overrightarrow{a}$+2$\overrightarrow{b}$,$\overrightarrow{BC}$=-4$\overrightarrow{a}$-$\overrightarrow{b}$,$\overrightarrow{CD}$=-5$\overrightarrow{a}$-3$\overrightarrow{b}$,则四边形ABCD的形状是(  )
A.长方形B.平行四边形C.菱形D.梯形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知抛物线y2=2px(p>0)的焦点为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点,且其准线被该双曲线截得的弦长是$\frac{2}{3}$b,则该双曲线的离心率为(  )
A.$\frac{13}{9}$B.$\frac{10}{9}$C.$\frac{\sqrt{13}}{3}$D.$\frac{\sqrt{10}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知菱形ABCD的边长为2,∠BAC=60°,则$\overrightarrow{BC}•\overrightarrow{AC}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合A={x|log2(4-x)<1},B={x|3x-1≤9},则A∩B=(  )
A.(2,3)B.(2,4)C.(2,3]D.[2,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若x,y满足约束条件$\left\{\begin{array}{l}{x-1≥0}\\{x-y≤0}\\{x+y-4≤0}\end{array}\right.$,则z=2x-y+1的取值范围为(  )
A.[0,1]B.[0,2]C.[0,3]D.[2,3]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知点F,A是椭圆C:$\frac{x^2}{16}+\frac{y^2}{12}=1$的左焦点和上顶点,若点P是椭圆C上一动点,则△PAF周长的最大值为16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数$f(x)=4sinxcos({x-\frac{π}{3}})-\sqrt{3}$.
(Ⅰ)求f(x)的最小正周期、零点;
(Ⅱ)求f(x)在区间$[{\frac{π}{24},\frac{3π}{4}}]$上的最大值和最小值.

查看答案和解析>>

同步练习册答案