精英家教网 > 高中数学 > 题目详情
7.若x,y满足约束条件$\left\{\begin{array}{l}{x-1≥0}\\{x-y≤0}\\{x+y-4≤0}\end{array}\right.$,则z=2x-y+1的取值范围为(  )
A.[0,1]B.[0,2]C.[0,3]D.[2,3]

分析 由约束条件作出可行域,数形结合得到最优解,求出最优解的坐标,代入目标函数得答案.

解答 解:x,y满足约束条件$\left\{\begin{array}{l}{x-1≥0}\\{x-y≤0}\\{x+y-4≤0}\end{array}\right.$
对应的区域如图:
当直线z=2x-y+1经过A时,目标函数最小,
当经过B时最大;由$\left\{\begin{array}{l}{x-1=0}\\{x+y=4}\end{array}\right.$得到A(1,3),
由$\left\{\begin{array}{l}{x+y-4=0}\\{x-y=0}\end{array}\right.$,解得B(2,2)
所以目标函数z=2x-y+1的最大值为2×2-2+1=3,
最小值为2×1-3+1=0;
故目标函数z=2x-y+1的取值范围为[0,3];
故选:C.

点评 本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.在等差数列{an}中,a3+a9=18-a6,Sn表示数列{an}的前n项和,则S11=(  )
A.66B.99C.198D.297

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若0<m<n<2,e为自然对数的底数,则下列各式中一定成立的是(  )
A.men<nemB.men>nemC.mlnn>nlnmD.mlnn<nlnm

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在长为8cm的线段AB上任取一点C,作一矩形,邻边长分别等于线段AC,CB的长,则该矩形面积小于15cm2的概率为(  )
A.$\frac{8}{15}$B.$\frac{3}{5}$C.$\frac{3}{4}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=2sinωx+1(ω>0)在区间[-$\frac{π}{2}$,$\frac{2π}{3}$]上是增函数,则ω的取值范围是(  )
A.(0,$\frac{3}{4}$]B.(0,1]C.[$\frac{3}{4}$,1]D.[$\frac{3}{2}$,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知$|{\overrightarrow a}|=1$,$\overrightarrow a$与$\overrightarrow b$的夹角为$\frac{π}{3}$,$({\overrightarrow a+2\overrightarrow b})•\overrightarrow a=3$,则$|{\overrightarrow b}|$的值是(  )
A.3B.1C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知集合A={-1,1,2,3},B={x|x∈R,x2<3},则A∩B={-1,1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知双曲线过点(2,3),其中一条渐近线方程为$y=\sqrt{3}x$,则双曲线的标准方程是(  )
A.$\frac{{7{x^2}}}{16}-\frac{y^2}{12}=1$B.$\frac{y^2}{3}-\frac{x^2}{2}=1$C.${x^2}-\frac{y^2}{3}=1$D.$\frac{{3{y^2}}}{23}-\frac{x^2}{23}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=ex(x2+ax+a)(a∈R)
(Ⅰ)求f(x)的单调区间;
(Ⅱ)若a=-1,判断f(x)是否存在最小值,并说明理由.

查看答案和解析>>

同步练习册答案