精英家教网 > 高中数学 > 题目详情
12.已知$|{\overrightarrow a}|=1$,$\overrightarrow a$与$\overrightarrow b$的夹角为$\frac{π}{3}$,$({\overrightarrow a+2\overrightarrow b})•\overrightarrow a=3$,则$|{\overrightarrow b}|$的值是(  )
A.3B.1C.$\sqrt{2}$D.2

分析 设$|{\overrightarrow b}|$=x,根据向量的数量积公式计算即可

解答 解:设$|{\overrightarrow b}|$=x,
∵$|{\overrightarrow a}|=1$,$\overrightarrow a$与$\overrightarrow b$的夹角为$\frac{π}{3}$,$({\overrightarrow a+2\overrightarrow b})•\overrightarrow a=3$,
∴$\overrightarrow{a}$2+2$\overrightarrow{a}$•$\overrightarrow{b}$=1+2|$\overrightarrow{a}$|•|$\overrightarrow{b}$|cos$\frac{π}{3}$=1+x=3,
解得x=2,
故选:D.

点评 本题考查了向量的数量积公式,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知向量$\overrightarrow{m}$=(sinA,$\frac{1}{2}$)与向量$\overrightarrow{n}$=(3,sinA+$\sqrt{3}$cosA)共线,其中A是△ABC的内角.
(1)求角A的大小.
(2)若BC=4,求△ABC的面积S的最大值,并判断S取得最大值时△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知抛物线y2=2px(p>0)的焦点为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点,且其准线被该双曲线截得的弦长是$\frac{2}{3}$b,则该双曲线的离心率为(  )
A.$\frac{13}{9}$B.$\frac{10}{9}$C.$\frac{\sqrt{13}}{3}$D.$\frac{\sqrt{10}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合A={x|log2(4-x)<1},B={x|3x-1≤9},则A∩B=(  )
A.(2,3)B.(2,4)C.(2,3]D.[2,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若x,y满足约束条件$\left\{\begin{array}{l}{x-1≥0}\\{x-y≤0}\\{x+y-4≤0}\end{array}\right.$,则z=2x-y+1的取值范围为(  )
A.[0,1]B.[0,2]C.[0,3]D.[2,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{12}=1({a>0})$,以原点为圆心,双曲线的实轴长为半径长的圆与双曲线的两条渐近线相交于A,B,C,D四点,四边形的ABCD的面积为$2\sqrt{3}a$,则a的值为(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$或$2\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知点F,A是椭圆C:$\frac{x^2}{16}+\frac{y^2}{12}=1$的左焦点和上顶点,若点P是椭圆C上一动点,则△PAF周长的最大值为16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆的两个焦点为${F_1}(-\sqrt{5},0)$,${F_2}(\sqrt{5},0)$是椭圆上一点,若$\overrightarrow{M{F_1}}•\overrightarrow{M{F_2}}=0$,$|\overrightarrow{M{F_1}}|•|\overrightarrow{M{F_2}}|=8$.
(1)求椭圆的方程;
(2)直线l过右焦点${F_2}(\sqrt{5},0)$(不与x轴重合)且与椭圆相交于不同的两点A,B,在x轴上是否存在一个定点P(x0,0),使得$\overrightarrow{PA}•\overrightarrow{PB}$的值为定值?若存在,写出P点的坐标(不必求出定值);若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知z=(a-2)+(a+1)i在复平面内对应的点在第二象限,则实数a的取值范围是(-1,2).

查看答案和解析>>

同步练习册答案