精英家教网 > 高中数学 > 题目详情
20.已知集合A={x|log2(4-x)<1},B={x|3x-1≤9},则A∩B=(  )
A.(2,3)B.(2,4)C.(2,3]D.[2,3]

分析 根据指数和对数的性质求出集合A,B的等价条件,结合集合交集的定义进行求解即可.

解答 解:由log2(4-x)<1的0<4-x<2,得2<x<4,即A=(2,4),
B={x|3x-1≤9}={x|x-1≤2}={x|x≤3},
则A∩B={x|2<x≤3},
故选:C

点评 本题主要考查集合的基本运算,求出集合的等价条件是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.定义在R上的奇函数f(x)对任意x1,x2(x1≠x2)都有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>0$,若实数m,n满足f(m2+4m+12)+f(n2-6n)<0,则|m-2n-4|的取值范围为(  )
A.$[\frac{{12\sqrt{5}}}{5}-1,\frac{{12\sqrt{5}}}{5}+1]$B.$(\frac{{12\sqrt{5}}}{5}-1,\frac{{12\sqrt{5}}}{5}+1)$C.$[12-\sqrt{5},12+\sqrt{5}]$D.$(12-\sqrt{5},12+\sqrt{5})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知三次函数f(x)=ax3+bx2+cx(a,b,c∈R),
(1)若函数f(x)过点(-1,2)且在点(1,f(1))处的切线方程是y+2=0,求函数f(x)的解析式;
(2)在(1)的条件下,若对于区间[-3,2]上任意两个自变量的值x1,x2,都有|f(x1)-f(x2)|≤t,求实数t的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.正三角形ABC的两个顶点A,B在抛物线x2=2py(p>0)上,另一个顶点C是此抛物线焦点,则满足条件的三角形ABC的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在长为8cm的线段AB上任取一点C,作一矩形,邻边长分别等于线段AC,CB的长,则该矩形面积小于15cm2的概率为(  )
A.$\frac{8}{15}$B.$\frac{3}{5}$C.$\frac{3}{4}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知复数z(1-2i)=2+i,则z=(  )
A.iB.-iC.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知$|{\overrightarrow a}|=1$,$\overrightarrow a$与$\overrightarrow b$的夹角为$\frac{π}{3}$,$({\overrightarrow a+2\overrightarrow b})•\overrightarrow a=3$,则$|{\overrightarrow b}|$的值是(  )
A.3B.1C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点到该双曲线渐近线的距离等于(  )
A.aB.bC.$\sqrt{ab}$D.$\frac{a+b}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知x,y满足$\left\{\begin{array}{l}x≥0\\ y≥0\\ x+y≤4\end{array}\right.$则x2-y的最大值为16.

查看答案和解析>>

同步练习册答案