精英家教网 > 高中数学 > 题目详情
9.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点到该双曲线渐近线的距离等于(  )
A.aB.bC.$\sqrt{ab}$D.$\frac{a+b}{2}$

分析 双曲线的右焦点(c,0),一条渐近线是bx-ay=0,由点到直线距离公式可求出双曲线的右焦点到一条渐近线的距离.

解答 解:双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点(c,0),一条渐近线是bx-ay=0,
由点到直线距离公式,双曲线的一个焦点到一条渐近线的距离是
$\frac{|bc-a×0|}{\sqrt{{a}^{2}+{b}^{2}}}$=b;
故选:B.

点评 本题是简单题型,解题时越是简单题越要注意,避免出现会而不对的情况.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.某班5名学生的数学和物理成绩如下表:
ABCDE
数学成绩(x)8876736663
物理成绩(y)7865716461
(1)求物理成绩y对数学成绩x的回归直线方程;
(2)一名学生的数学成绩是96,试预测他的物理成绩.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合A={x|log2(4-x)<1},B={x|3x-1≤9},则A∩B=(  )
A.(2,3)B.(2,4)C.(2,3]D.[2,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{12}=1({a>0})$,以原点为圆心,双曲线的实轴长为半径长的圆与双曲线的两条渐近线相交于A,B,C,D四点,四边形的ABCD的面积为$2\sqrt{3}a$,则a的值为(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$或$2\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知点F,A是椭圆C:$\frac{x^2}{16}+\frac{y^2}{12}=1$的左焦点和上顶点,若点P是椭圆C上一动点,则△PAF周长的最大值为16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.为促进义务教育的均衡发展,各地实行免试就近入学政策,某地区随机调查了50人,他们年龄的频数分布及赞同“就近入学”人数如表:
年龄[5,15)[15,25)[25,35)[35,45)[45,55)[55,65)
频数510151055
赞同4512821
(1)在该样本中随机抽取3人,求至少2人支持“就近入学”的概率.
(2)若对年龄在[5,15),[35,45)的被调查人中各随机选取2两人进行调查,记选中的4人支持“就近入学”人数为X,求随机变量X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆的两个焦点为${F_1}(-\sqrt{5},0)$,${F_2}(\sqrt{5},0)$是椭圆上一点,若$\overrightarrow{M{F_1}}•\overrightarrow{M{F_2}}=0$,$|\overrightarrow{M{F_1}}|•|\overrightarrow{M{F_2}}|=8$.
(1)求椭圆的方程;
(2)直线l过右焦点${F_2}(\sqrt{5},0)$(不与x轴重合)且与椭圆相交于不同的两点A,B,在x轴上是否存在一个定点P(x0,0),使得$\overrightarrow{PA}•\overrightarrow{PB}$的值为定值?若存在,写出P点的坐标(不必求出定值);若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若$\frac{m+i}{1+i}$=ni,则实数m=-1,实数n=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}满足:a1=1,an+1=2an,数列{bn}满足:b1=3,b4=11,且{an+bn}为等差数列.
(I) 求数列{an}和{bn}的通项公式;
(II) 求数列{bn}的前n项和.

查看答案和解析>>

同步练习册答案